Министерство образования и науки Мурманской области Государственное автономное нетиповое образовательное учреждение Мурманской области «Центр образования «Лапландия» Детский технопарк «Кванториум-51»

АТКНИЧП

методическим советом

протокол

OT 19.05.24

Председатель

№ <u>16</u>

О.А. Бережняк

УТВЕРЖДЕНА

приказом ГАНОУ МО

«ЦО «Лапландия»

OT 19.05.1

Директор 💹

Nº 763

С.В. Кулаков

БИОКВАНТУМ

ДОПОЛНИТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА ЕСТЕСТВЕННОНАУЧНОЙ НАПРАВЛЕННОСТИ «Методы анализа нуклеиновых кислот»

Возраст учащихся: **14-17 лет** Срок реализации программы: **1 год**

Автор- составитель: Икко Наталья Викторовна, к.б.н., зав. сектором

Эксперт:

Балачина Е.С., доцент кафедры микробиологии и биохимии ФГАОУ ВО «Мурманский арктический университет»

Мурманск 2024

І. Пояснительная записка

1.1 Область применения программы

Программа может применяться в учреждениях дополнительного образования и общеобразовательных организациях при наличии материально-технического обеспечения и соблюдении санитарных норм.

Направленность (профиль) программы: естественнонаучная.

1.2. Нормативно-правовая база разработки и реализации программы

Программа разработана в соответствии с

- с Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- с приказом Министерства просвещения Российской Федерации от 27 июля 2022 г. N 629 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- с письмом Министерства образования и науки РФ от 25.07.2016 № 09-1790 «Рекомендации по совершенствованию дополнительных образовательных программ, созданию детских технопарков, центров молодежного инновационного творчества и внедрению иных форм подготовки детей и молодежи по программам инженерной направленности»;
- со Стратегией научно-технологического развития Российской Федерации, утверждённой приказом Президента РФ от 01.12.2016 № 642;
- с постановлением Правительства РФ от 18.04.2016 № 317 «О реализации Национальной технологической инициативы» в редакции от 01.07.2021;
- с постановлением Главного государственного санитарного врача РФ от 28.09.2020 № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
- с постановлением Главного государственного санитарного врача РФ от 28.01.2021 №2 «Об утверждении санитарных правил и норм СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания»;
- с Концепцией развития дополнительного образования детей до 2030 года, утверждённой распоряжением Правительства Российской Федерации от 31.03.2022 № 678-р.

1.3. Актуальность, педагогическая целесообразность программы

Успехи в изучении нуклеиновых кислот и биосинтеза белка привели к созданию ряда методов, имеющих большое прикладное значение в медицине,

сельском хозяйстве и ряде других отраслей. Прежде всего, эти методы касаются получения индивидуальных генов и их введения в клетки других организмов (молекулярное клонирование и трансгенез, ПЦР), а также последовательности методов определения нуклеотидов генах (секвенирования ДНК и РНК). Создание и совершенствование этих методов привело к бурному развитию молекулярной биологии в XXI веке, а профессия молекулярного биолога стала одной из самых востребованных. Специалисты этой сферы используют самые современные достижения науки и техники для создания новых организмов и органических веществ с целью дальнейшего использования в исследовательской и деятельности. Среди методов, которые используют молекулярные биологи, – клонирование, трансфекция, полимеразная цепная реакция, секвенирование генов и другие. Специалисты-молекулярные биологи востребованы во многих областях в связи с активным развитием науки, биотехнологических и инновационных предприятий. Заниматься молекулярной биологией и ставить эксперименты на профессиональном уровне можно еще со школьного возраста. Обучаясь по программе «Методы анализа нуклеиновых кислот», ДНК школьники смогут изучать разные образцы современных методов анализа, проводить собственные исследования в данной области, познакомиться с последними открытиями в области молекулярной биологии.

Актуальность программы «Методы анализа нуклеиновых кислот» обусловлена необходимостью повышения мотивации детей к выбору специальностей естественнонаучного профиля, совершенствования системы непрерывной подготовки будущих высококвалифицированных кадров, обладающих академическими знаниями и профессиональными компетенциями в области биотехнологий.

Педагогическая целесообразность данной программы состоит в том, что она дает возможность обучающимся получить передовые знания в области молекулярной биотехнологии, освоить базовые методы анализа нуклеиновых кислот, приобрести практические навыки работы на различных видах современного оборудования, научиться планировать и реализовывать конкретные исследовательские и прикладные задачи, понимать роль научных исследований в современном мире и значимость международного сотрудничества.

Новизна программы заключается в том, что она реализуется с использованием высокотехнологичного оборудования детского технопарка «Кванториум» в условиях мотивирующей интерактивной среды, направлена на развитие у обучающихся устойчивого интереса к интеллектуальным соревнованиям, олимпиадному движению, освоению современных технологий, практических навыков в избранной образовательной области.

1.4. Цель программы: создание условий для развития компетенций в области молекулярной биотехнологии через погружение в проектную и исследовательскую деятельность на основе кейс-технологий.

1.5. Задачи программы

Обучающие:

- Создать условия для развития понимания биологических процессов на молекулярном уровне и уровне клетки.
- Создать условия для ознакомления с современными методами исследований в молекулярной биологии, формирования представлений о возможностях их использования в научных исследованиях.
- Создать условия для приобретения опыта использования методов биологической науки на практике.
- Создать условия для развития умений безопасного и эффективного использования лабораторного оборудования, проведения точных измерений и адекватной оценки полученных результатов.
- Создать условия для развития умений формулировать гипотезы, конструировать, проводить эксперименты, оценивать полученные результаты.
- Создать условия для развития умения сопоставлять экспериментальные и теоретические знания с объективными реалиями жизни.

Развивающие:

- Создать условия для развития логического мышления
- Создать условия для развития памяти, наблюдательности и внимания.
- Создать условия для дальнейшего развития умений анализировать, сопоставлять, сравнивать, обобщать познавательные объекты, делать выводы.
- Создать условия для дальнейшего развития умения составлять план и следовать ему.
- Создать условия для дальнейшего развития умений самостоятельно осуществлять поиск информации и представлять ее в письменной и устной форме.
- Создать условия для дальнейшего развития коммуникативных навыков через разнообразные виды речевой деятельности (монологическая, диалогическая речь).
- Содействовать дальнейшему развитию самостоятельной познавательной деятельности.

Воспитательные:

- Способствовать развитию ответственности, трудолюбия, целеустремленности и организованности.
- Содействовать повышению уровня мотивации к обучению.
- Способствовать развитию умения отстаивать свою точку зрения.

- Способствовать развитию культуры взаимоотношений при работе в парах, группах, коллективе.
- **1.6. Адресат программы.** Данная программа предназначена для обучающихся 14-17 лет, успешно окончивших обучение по программам естественнонаучной направленности стартового уровня и прошедших экспертную оценку проектов, либо для школьников, успешно прошедших входное тестирование. Минимальное количество человек в группе 8. Максимальное количество человек в группе 12.

Уровень программы – базовый.

- 1.7. Формы реализации программы: очная.
- 1.8. Срок освоения программы (модуля): 1 год.

Объем программы: 144 часа

- **1.9. Формы организации занятий:** индивидуальная, парная, групповая, коллективная.
 - 1.10. Режим занятий: 2 раза в неделю по 2 академических часа.
- **1.11. Виды учебных занятий и работ:** лекции, практические работы, лабораторные работы, самостоятельная работа в группах, организационнодеятельностные игры, конференция.

1.12. Ожидаемые результаты обучения

Личностные результаты:

Учащийся будет демонстрировать в деятельности:

- критическое отношение к информации и избирательность её восприятия;
- осмысление мотивов своих действий при выполнении заданий;
- любознательность, сообразительность при выполнении разнообразных заданий проблемного и эвристического характера;
- умение организовывать свою деятельность (планирование, контроль, оценка);
- готовность к самостоятельным действиям, ответственность за их результаты;
- внимательность, настойчивость, целеустремленность, умение преодолевать трудности;
- самостоятельность суждений, независимость и нестандартность мышления;
- готовность открыто выражать и отстаивать свою позицию;
- осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре.

Метапредметные результаты:

Регулятивные универсальные учебные действия:

Обучающийся научится:

- ставить цель, планировать достижение этой цели;
- планировать последовательность шагов для достижения цели;
- планировать ресурсы для решения задачи;
- осуществлять текущий контроль своей деятельности;
- называть трудности, с которыми столкнулся при решении задачи, и предлагать пути их преодоления;
- адекватно воспринимать конструктивную критику;
- оценивать получающийся творческий продукт и соотносить его с изначальным замыслом, выполнять по необходимости коррекции либо продукта, либо замысла.

Познавательные универсальные учебные действия:

Обучающийся научится:

- использовать средства информационных и коммуникационных технологий для решения коммуникативных, познавательных и творческих задач;
- проводить сравнение, классификацию по заданным критериям;
- строить логические рассуждения в форме связи простых суждений об объекте;
- устанавливать аналогии, причинно-следственные связи.

Коммуникативные универсальные учебные действия:

Обучающийся научится:

- аргументировать свою точку зрения на выбор оснований и критериев при выделении признаков, сравнении и классификации объектов;
- планировать учебное сотрудничество с наставником и сверстниками: определять цели, функции участников, способы взаимодействия;
- с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации;
- владеть монологической и диалогической формами речи;
- работать в группе сверстников при решении познавательных задач в области биологии, выстраивания коммуникации, учитывая мнение окружающих, и адекватно оценивать собственный вклад в деятельность группы.

Предметные результаты:

Обучающийся научится:

- самостоятельно проводить поиск и анализ информации в области молекулярной биологии для решения практических задач;
- проводить полимеразную цепную реакцию, электрофоретический и рестрикционный анализ ДНК;
- производить расчеты концентрации растворов и приготавливать растворы заданной концентрации;

- составлять протоколы испытаний согласно образцу;
- применять освоенные методы исследования нуклеиновых кислот для решения практических задач;
- соблюдать правила техники безопасности при работе в молекулярнобиологической лаборатории;
- работать с базами данных в области геномики и молекулярной биологии (NCBI и др.);
- ориентироваться в биоинформатическом программном обеспечении (программа UGENE).

Обучающийся получит возможность научиться:

- сопоставлять экспериментальные и теоретические знания с объективными реалиями жизни;
- приемам работы с информацией биологического содержания, представленной в разной форме (в виде текста, табличных данных, схем, графиков, фотографий и др.) и критического анализа информации;
- планировать учебное исследование или проектную работу с учетом поставленной цели: формулировать проблему, гипотезу и ставить задачи исследования, выбирать адекватно поставленной цели методы, делать выводы по результатам исследования или проектной деятельности;

1.13. Формы промежуточной аттестации: мини-конференция по защите проектов, презентация (самопрезентация) проектов обучающихся.

II. Учебный план

No	Название раздела, темы	Коли	чество	часов	Формы аттестации/ контроля	
Π/Π		Всег	Теори	Практик		
		o	Я	a		
1.	Введение в образовательную	2	1	1	Фронтальная (устный опрос)	
	программу.					
2.	Основы исследовательской	10	4	6	Комбинированная (практическая	
	деятельности				проверка)	
3.	Кейс «Молекулярные ножницы»	14	6	8	Комбинированная (практическая	
					проверка)	
	Кейс «Головоломка из фрагментов	18	2	16	Комбинированная (практическая	
	ДНК»				проверка)	
5.	Кейс «Генная гармошка»	20	4	16	Комбинированная (практическая	
					проверка)	
6.	Кейс «Играем в детективов»	24	4	20	Комбинированная (практическая	
					проверка)	
7.	Геномика и прочие омики	14	8	6	Комбинированная (практическая	
					проверка)	
8.	Биоинформатика – наука XXI века	40	8	32	Комбинированная (практическая	
					проверка)	
9.	Подведение итогов освоения	2	0	2	Групповая (практическая проверка)	
	программы				Презентация проектов	
	Итого	144	37	107		

IV. Содержание изучаемого курса (144 часа)

Тема 1. Введение в образовательную программу. (2 часа). *Теория (1 час):*

Современные молекулярно-биологические методы анализа Определение нуклеотидной нуклеиновых кислот. последовательности Амплификация нуклеиновых кислот. фрагментов ДНК cпомощью полимеразной цепной реакции. Гибридизация нуклеиновых кислот.

Практическое занятие (1 час):

Техника безопасности. Вводный инструктаж.

Тема 2. Основы исследовательской деятельности (10 часов) *Теория (4 часа)*

Постановка проблемы. Определение и постановка цели и задач исследования. Выдвижение гипотезы исследования. Определение содержания, структуры и вида исследования. Подбор и применение методов на различных этапах исследования. Планирование в исследовательской деятельности.

Поиск информации. Ознакомление с методами поиска, изучение литературы, работа с литературными источниками, поиск в Интернете. Сбор, систематизация и анализ данных. Библиографические ссылки. Цитирование. Оформление библиографического списка; представление иллюстративного материала. Экспериментальный этап исследования. Ведение дневника экспериментальной работы. Обработка первичных результатов. Подготовка работы к защите. Структурирование исследовательского материала. Композиция исследовательской работы. Основные требования к оформлению работы.

Практика (6 часов)

Практикум «Знакомство с библиографическими базами данных». Тренинг по оформлению в текстовых редакторах библиографических ссылок, цитат и списка литературы. Практикум «Разработка и выполнение рисунков, чертежей, схем, графиков, макетов». Практикум «Оформление и редактирование текста научной работы». Практикум «Составление тезисов и аннотации исследовательской работы».

Тема 3. Кейс «Молекулярные ножницы» (14 часов) Теория (6 часов)

Система рестрикции-модификации бактерий. Ферменты рестрикции, их особенности. Сайты рестрикции. Системы CRISPR/Cas как иммунная система прокариот. Использование систем CRISPR/Cas для редактирования генов.

Практика (8 часов)

Работа над кейсом: формулировка проблемы, поиск информации, обсуждение способов решения проблемы.

Знакомство с программным пакетом UGENE. Работа в UGENE с сайтами рестрикции.

Тема 4. Кейс «Головоломка из фрагментов ДНК» (18 часов)

Теория (2 часа)

Введение в рестрикционный анализ ДНК. Рестрикционное картирование ДНК.

Практика (16 часов)

Работа над кейсом: формулировка проблемы, поиск информации, обсуждение способов решения проблемы.

«Рестрикционное расщепление ДНК фага лямбда».

Подготовка образцов ДНК, агарозного геля и камеры для электрофореза. Разделение фрагментов ДНК. Окрашивание ДНК. Получение и анализ электрофореграммы. Построение рестрикционной карты.

«Рестрикционное расщепление плазмиды, экстрагированной из штамма *E.coli* XL1-Blue». Подготовка образцов ДНК, агарозного геля и камеры для электрофореза. Разделение фрагментов ДНК. Окрашивание ДНК. Получение и анализ электрофореграммы. Построение рестрикционной карты.

Тема 5. Кейс «Генная гармошка» (20 часов)

Теория (4 часа)

Репликация ДНК. Амплификация ДНК. Полимеразная цепная реакция (ПЦР).

Практика (16 часов)

Работа над кейсом: формулировка проблемы, поиск информации, обсуждение способов решения проблемы.

«Амплификация гена резус-фактора человека».

Правила работы с амплификатором (термоциклером). Подготовка образцов ДНК для ПЦР, постановка ПЦР.

Приготовление агарозного геля для электрофореза. Проведение электрофореза ДНК: подготовка образцов ДНК, настройка камеры для электрофореза, разделение фрагментов ДНК. Окрашивание ДНК.

Получение электрофореграммы и ее анализ.

Тема 6. Кейс «Играем в детективов» (24 часа)

Теория (4 часа)

Применение ДНК-технологий в криминалистике. Геномная дактилоскопия.

Практика (20 часов)

Формулировка проблемы. Поиск информации. Обсуждение существующих способов решения проблемы.

«Идентификация личности методом ПЦР-анализа»

Подготовка образцов ДНК для ПЦР, постановка ПЦР.

Приготовление агарозного геля для электрофореза. Проведение электрофореза ДНК: подготовка образцов ДНК, настройка камеры для электрофореза, разделение фрагментов ДНК. Окрашивание ДНК. Получение электрофореграммы и ее анализ.

«Фингерпринтинг методом рестрикционного анализа».

Подготовка образцов ДНК и камеры для электрофореза. Разделение фрагментов ДНК. Окрашивание ДНК. Получение и анализ электрофореграммы. Построение рестрикционной карты.

Тема 7. Геномика и прочие омики (14 часов)

Теория (8 часов)

История возникновения и развития геномики. Секвенирование нуклеиновых кислот. Программа «Геном человека». Структура генома прокариот и эукариот. Геномика и омиксные технологии.

Практика (6 часов):

Решение задач на анализ геномов.

Тема 8. Биоинформатика – наука XXI века (40 часов)

Теория (8 часов)

История возникновения биоинформатики. Задачи, методы и перспективы развития.

Биологические базы данных. Биоинформатические программы и сервисы.

Практика (32 часа)

Работа в базах данных NCBI, KEGG, UniProt, GenBank, Protein Data Bank (PDB). Анализ последовательностей биологических полимеров. Расширенный поиск с применением алгоритмов семейства BLAST. Анализ результатов секвенирования. Филогенетический анализ.

Тема 9. Подведение итогов освоения программы (2 часа)

V. Комплекс организационно-педагогических условий

5.1. Календарный учебный график, включающий месяц, число, форму проведения занятия, количество часов занятия, тему, место проведения занятия в соответствии с календарными датами текущего учебного года (приложение 1 к программе).

5.2. Ресурсное обеспечение программы.

- Материально-техническое обеспечение

Для проведения лекций, семинаров предусмотрен кабинет, оснащенный компьютерной техникой, не менее 1 ПК на 2 ученика, проектором, экраном, магнитно-маркерной доской, магнитно-маркерным флип-чартом.

Лабораторные занятия курса «Методы анализа нуклеиновых кислот» проводятся в учебной лаборатории, предназначенной для подготовки и проведения молекулярно-биологических исследований. Оборудование и техника работ в учебной лаборатории должны соответствовать требованиям, предъявляемым к производственным и другим лабораториям соответствующего профиля.

В состав учебной лаборатории входят: комната для исследованийзанятий; автоклавная (стерилизационная); моечная, оборудованная для мытья посуды; препараторская, где проводят подготовку лабораторной посуды и хранят питательные среды; материальная комната — для хранения запасов реактивов, посуды, аппаратуры, приборов, хозяйственного инвентаря. Для проведения посевов, стерильной разливки сред и других работ с соблюдением правил асептики в помещении для исследований установлен бокс-ламинар.

Для проведения практических занятий необходим свободный доступ к сети «Интернет» и следующее программное обеспечение:

- программа UGENE (ссылка для скачивания http://ugene.net/download.html);
- программа PyMOL 3.0 (ссылка для скачивания <u>PyMOL | pymol.org</u>);
- онлайн приложение «CCTop CRISPR/Cas9 target online predictor» URL:
 CCTop CRISPR/Cas9 target online predictor (uni-heidelberg.de);
- онлайн приложение «RNAfold web server» URL:
 http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi

Учебно-методические средства обучения:

Применяемое на занятиях дидактическое и учебно-методическое обеспечение включает в себя электронные учебники, справочные материалы и системы используемых Программ, Интернет, рабочие тетради обучающихся.

- специальное оборудование:

- 1. Бокс абактериальной БАВ ПЦР-"Ламинар-С"
- 2. Мини-центрифуга «Minispin»
- 3. Мини-центрифуга/вортекс «Микроспин FV-2400»
- 4. Персональный вортекс «V-1 plus»
- 5. Аспиратор «BS-040108-AAG Biosan»
- 6. Термостат твердотельный ТТ-2-«Термит»
- 7. Амплификатор (термоциклер) «Termix»
- 8. Спектрофотометр «NanoPhotometer NP80»
- 9. Микроволновая печь
- 10. Камера для электрофореза
- 11.Источник питания для электрофореза «Эльф»
- 12. Система гель-документирования «Vilber Lourmat Bio-Print-CX4/20М»
- 13. Гомогенизатор ультразвуковой UP200St
- 14. Автоматическая пипетка
- 15. Наконечники для автоматических пипеток
- 16.Промывалка
- 17. Пробирки типа Eppendorf
- 18. Штативы для микропробирок

- 19. Штатив подставка для автоматических пипеток
- 20. Реактивы для молекулярно-биологических работ: образовательные наборы реактивов производства компаний ООО «Живые системы» и ООО «Био-Рад Лаборатории».
- Информационно-методическое обеспечение:

образовательную практическая работа 2 Основы исследовательск ой деятельности дискуссия 3 Кейс «Молекулярные ножницы» Практическая работа Лекция- тем беседа, дискуссия со	Градиционные ехнологии Проектные ехнологии, ехнологии отрудничества	Словесные методы (устное изложение); Наглядные методы (метод демонстраций, метод иллюстраций); Словесные	Презентация , видео	Компьютер, проектор	Фронт альная (устны й опрос)
з Кейс «Молекулярные ножницы» Беседа, дискуссия Тесо	ехнологии, ехнологии	 Словесные 			
«Молекулярные самостоятель те ножницы» ная работа в пр		методы (беседа, дискуссия) — Методы проблемного обучения (частично-поисковый, исследовательский, познавательное проблемное изложение, диалогическое проблемное изложение)	и	Компьютер, проектор, флипчарт магнитно-маркерный, фломастеры, фотоаппарат	Комби нирова нная (практи ческая провер ка)
дискуссия те ра об те	радиционные ехнологии, роектные ехнологии, ехнологии азвивающего бучения, ехнологии отрудничества	 Словесные методы (лекция, дискуссия) Методы проблемного обучения (частично-поисковый, исследовательский, познавательное проблемное изложение, диалогическое проблемное изложение, изложение,) 	Видео, презентации, компьютерн ые симуляции и т.д.	Компьютер, проектор, флипчарт магнитно-маркерный, фломастеры, фотоаппарат	Комби нирова нная (практи ческая провер ка)
«Головоломка из дабораторная те работа, пр дНК» самостоятель ная работа в группах работа	радиционные ехнологии, роектные ехнологии, ехнологии азвивающего бучения, ехнологии отрудничества	— Словесные методы (лекция, дискуссия) — Методы проблемного обучения (частично-поисковый, исследовательский, познавательное проблемное изложение, диалогическое проблемное изложение,)	Видео, презентации, компьютерные симуляции и т.д.	Компьютер, проектор, флипчарт магнитно- маркерный, фломастеры, фотоаппарат	Комби нирова нная (практи ческая провер ка)

	гармошка»	лабораторная	технологии,	методы (устное	, видео,	проектор,	нирова
		работа, самостоятель	проектные	изложение, объяснение,	компьютерн	флипчарт	нная
		ная работа в	технологии, технологии	дискуссия);	ые симуляции,	магнитно- маркерный,	(практи ческая
		группах	развивающего	Наглядные	протоколы	фотоаппарат,	провер
			обучения,	методы (метод	опытов	оборудование	ка)
			технологии сотрудничества	демонстраций,		для молекулярно-	
				метод иллюстраций;		биологически	
				приёмов работы на		х работ,	
				оборудовании);		химические реактивы	
				Методыпрактического		Pomerima	
				обучения			
				(лабораторные,			
				практические работы)			
				– Методы			
				проблемного			
				обучения			
				(частично- поисковый,			
				исследовательский)			
6	Кейс «Играем в	Лекция,	Традиционные	– Словесные	Презентации	Компьютер,	Комби
	детективов»	лабораторная работа,	технологии, проектные	методы (устное изложение,	, видео, компьютерн	проектор, флипчарт	нирова нная
		самостоятель	технологии,	объяснение,	ые	магнитно-	(практи
		ная работа в	технологии	дискуссия);	симуляции,	маркерный,	ческая
		группах	развивающего обучения,	Наглядные	протоколы опытов	фотоаппарат, оборудование	провер ка)
			технологии	методы (метод демонстраций,		для	,
			сотрудничества	метод		молекулярно-	
				иллюстраций;		биологически х работ,	
				приёмов работы на оборудовании);		химические	
				– Методы		реактивы	
				практического			
				обучения			
				(лабораторные, практические			
				работы)			
				– Методы			
				проблемного обучения			
				(частично-			
				поисковый,			
7	Геномика и	Лекция,	Традиционные	исследовательский)	Презентации	Компьютер,	Комби
_	прочие омики	практическая	технологии,	Словесные методы (беседа,	,	проектор,	нирова
		работа	технологии	дискуссия);	видеоматери	флипчарт	нная
			развивающего обучения,	Наглядные	алы	магнитно- маркерный,	(практи ческая
			технологии	методы (метод		фломастеры,	провер
			сотрудничества	демонстраций)		фотоаппарат	ка)
			, компьютерные технологии	 Методы 			
			_ 3,112,121 1111	проблемного обучения			
				(частично-			
				поисковый)			
		<u> </u>			<u> </u>		

8	Биоинформатика – наука XXI века	Лекция, практическая работа	Традиционные технологии, технологии развивающего обучения, технологии сотрудничества, компьютерные технологии	 Словесные методы (беседа, дискуссия); Наглядные методы (метод демонстраций) Методы проблемного обучения (частично-поисковый) 	Презентации , видеоматери алы	Компьютер, проектор, флипчарт магнитно- маркерный, фломастеры, фотоаппарат	Комби нирова нная (практи ческая провер ка)
9	Подведение итогов освоения программы	Мини- конференция	Проектные технологии, компьютерные технологии	 Словесные методы (беседа, дискуссия); Наглядные методы (метод демонстраций) Методы проблемного обучения (сообщающее изложение с элементами проблемности, диалогическое проблемное изложение) 	Презентации	Компьютер, проектор, флипчарт магнитно-маркерный, фломастеры, фотоаппарат	Группо вая (устны й контро ль)

Формы и виды контроля

Диагностика эффективности образовательного процесса.

В ходе реализации программы обучающимися осуществляются диагностические срезы по определению уровня усвоения программы:

<u>Входной контроль</u> – тестирование, проверяющее уровень знаний в области генетики и молекулярной биологии.

<u>Итоговая аттестация</u> проводится в конце обучения в виде конференции, на которой происходит защита проектов.

Результаты контроля фиксируются в диагностической карте.

Входной контроль

Материалы тестирования см. в Приложении 2.

Критерии оценки вводной диагностики:

Hизкий уровень — процент правильно выполненных тестовых заданий составляет 60% и ниже.

Средний уровень – процент правильно выполненных тестовых заданий составляет 61–79 %.

Bысокий уровень — процент правильно выполненных тестовых заданий составляет 80% и выше.

Итоговый контроль

Критерии оценки уровней освоения программы:

Уровни	Параметры	Показатели
Высокий	Теоретические	Обучающийся глубоко и всесторонне усвоил проблему;
уровень (80- 100%)	знания.	уверенно, логично, последовательно и грамотно излагает материал; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет понятиями.
	Практические умения и навыки.	Способен применять практические умения и навыки во время выполнения самостоятельных заданий. Работу выполняет с соблюдением правил техники безопасности, аккуратно, доводит ее до конца. Может оценить результаты выполнения своего задания и дать оценку работы своего товарища.
Средний уровень (50- 79%)	Теоретические знания.	Тема раскрыта недостаточно четко и полно, то есть обучающийся освоил проблему, по существу излагает ее, но допускает несущественные ошибки и неточности; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой понятий.
	Практические умения и навыки.	Владеет базовыми навыками и умениями, но не всегда может выполнить самостоятельное задание, затрудняется и просит помощи педагога. В работе допускает небрежность, делает ошибки, но может устранить их после наводящих вопросов или самостоятельно. Оценить результаты своей деятельности может с подсказкой педагога.
Низкий уровень (меньше 50%)	Теоретические знания.	Обучающийся не усвоил значительной части проблемы, допускает существенные ошибки и неточности при рассмотрении ее; не может аргументировать научные положения; не формулирует выводов и обобщений; не владеет понятийным аппаратом.
	Практические умения и навыки.	Владеет минимальными начальными навыками и умениями. Учащийся способен выполнять каждую операцию только с подсказкой педагога или товарищей. В работе допускает грубые ошибки, не может их найти их даже после указания. Не способен самостоятельно оценить результаты своей работы.

Сводная таблица результатов обучения по дополнительной общеобразовательной программе «Методы анализа нуклеиновых кислот»

Педагог доп. образования Икко Н.В. группа № _____

№ п/п	ФИ обучающегося	Оценка теоретических знаний	Оценка практических умений и навыков	Итоговая оценка
1.				
2.				
3.				
4.				
5.				

6.		
7.		

Показатели освоения дополнительной общеобразовательной программы

Hokusu telih deboemin gondinin elibilah da medapusabu telibilah inpot pullini	-
уровни освоения программы (в %):	
Низкий	
Средний	
Высокий	

Учебно-методические средства обучения:

Применяемое на занятиях дидактическое и учебно-методическое обеспечение включает в себя электронные учебники, справочные материалы и системы используемых Программ, Интернет, рабочие тетради обучающихся.

VI. Список литературы

Список литературы для педагога

- 1. Белова Т. Г. Исследовательская и проектная деятельность учащихся в современном образовании // Известия Российского государственного педагогического университета им. А.И. Герцена, 2008. Выпуск № 76-2. С. 30 35.
- 2. Биохимия : учебник / под ред. Е. С. Северина. 5-е изд., испр. и доп. М. : ГЭОТАР-Медиа, 2015.-768 с.
- 3. Бисерова Н.М. Методы визуализации биологических ультраструктур. М.: Издательство «КМК», 2013 104 с.
- 4. Букатов В.М., Ершова А.П. Нескучные уроки: обстоятельное изложение социо/игровых технологий обучения. Пособие для учителей физики, математики, географии, биологии и химии. СПб.:Школьная лига, 2013. 240 с.
- 5. Гусев М. В. Микробиология: Учебник для студ. биол. специальностей вузов / М.В. Гусев, Л. А.Минеева. 4-е изд., стер. М.: Издательский центр «Академия», 2003. 464 с.
- 6. Джеральд М. Фаллер, Деннис Шилдс . Молекулярная биология клетки М.: Бином, 2011-256 с.
- 7. Кузнецов И. Н. Научное исследование: методика проведения и оформление. М.: Издательско-торговая корпорация «Дашков и К», 2004.
- 8. Юшков А.Н. Учебные проекты на материале естественнонаучных дисциплин. Из методического опыта программы «Школьная Лига РОСНАНО». СПб.: Школьная лига, 2015. 106 с.

Список литературы для обучающихся и родителей

- 1. Артамонова И., Гоглева А. CRISPR-системы: иммунизация прокариот /Биомолекула https://biomolecula.ru/articles/crispr-sistemy-immunizatsiia-prokariot.
- 2. Биохимия : учебник / под ред. Е. С. Северина. 5-е изд., испр. и доп. М. : ГЭОТАР-Медиа, 2015. 768 с.

- 3. Бисерова Н.М. Методы визуализации биологических ультраструктур. М.: Издательство «КМК», 2013 104 с.
- 4. Джагаров Д.Э. Умные ножницы для ДНК / Химия и жизнь 2014 № 7 https://elementy.ru/nauchno-populyarnaya_biblioteka/432418/Umnye_nozhnitsy_dlya_DNK.
- 5. Джеральд М. Фаллер, Деннис Шилдс . Молекулярная биология клетки М.: Бином, 2011-256 с.
- 6. Кузнецов И. Н. Научное исследование: методика проведения и оформление. М.: Издательско-торговая корпорация «Дашков и К», 2004.
- 7. Леонтович А. В., Калачихина О. д., Обухов А. С. Тренинг «Самостоятельные исследования школьников». М., 2003.
- 8. Микробиология: методическое пособие для 10-11 классов/ А.И. Нетрусов, И.Б. Котова.-М: Бином. Лаборатория знаний, 2013.
- 9. Микробиология: практикум для 10-11 классов А.И. Нетрусов, И.Б. Котова М.:БИНОМ, Лаборатория знаний, 2013.
- 10. Разнообразие и эволюция систем CRISPR/Cas / Фармакогенетика https://pharmacogenetics-pharmacogenomics.ru/libs/item/raznoobrazie-i-evolyutsiya-sistem-crispr-cas?category_id=16.
- 11. Принципы и методы биохимии и молекулярной биологии [Электронный ресурс] / ред. К. Уилсон и Дж. Уолкер; пер. с англ.—2-е изд. (эл.).—Электрон. текстовые дан. (1 файл pdf: 855 с.).—М.: БИНОМ. Лаборатория знаний, 2015.
- 12. Шмонин, А.В., Комаристая, В.П. Геномная дактилоскопия: ДНК-технологии в криминалистике // Биологический вестник. 2001. Т.5, №1-2. С. 3-16. URL: http://dspace.univer.kharkov.ua/handle/123456789/10496
- 13. Биоинформатика: виртуальный эксперимент в шаге от реальности / Наука и жизнь -2004. № 11. URL: https://www.nkj.ru/archive/articles/310/
- 14. Гельфанд М.С. Что может биоинформатика / Химия и жизнь. 2009. № 9. URL: https://elementy.ru/nauchno-populyarnaya_biblioteka/430895/Chto_mozhet_bioinformatika
- 15. Биоинформатика наука XXI века (видео) URL: https://www.youtube.com/watch?v=R6_19X6fNPU
- 16. 12 методов в картинках: генная инженерия. Часть I, историческая. Волкова О., Пташник О. / Биомолекула. 2017. URL: https://biomolecula.ru/articles/12-metodov-v-kartinkakh-gennaia-inzheneriia-chast-i-istoricheskaia
- 17. 12 методов в картинках: генная инженерия. Часть II: инструменты и техники. Волкова О., Пташник О. /Биомолекула. 2017. URL: https://biomolecula.ru/articles/12-metodov-v-kartinkakh-gennaia-inzheneriia-chast-ii-instrumenty-i-tekhniki
- 18. 12 методов в картинках: полимеразная цепная реакция. Панов А., Пташник О. / Биомолекула 2017 г. URL: https://biomolecula.ru/articles/metody-v-kartinkakh-polimeraznaia-tsepnaia-reaktsiia
- 19. 12 методов в картинках: секвенирование нуклеиновых кислот. Недолужко А., Пташник О. / Биомолекула. 2017. URL: https://biomolecula.ru/articles/metody-v-kartinkakh-sekvenirovanie-nukleinovykh-kislot

- 20. 12 методов в картинках: протеомика. Мошковский С., Пташник О. / Биомолекула 2017. URL: https://biomolecula.ru/articles/12-metodov-v-kartinkakh-proteomika
- 21. 12 методов в картинках: «сухая» биология. Табакмахер В., Пташник О. / Биомолекула 2017. URL: https://biomolecula.ru/articles/12-metodov-v-kartinkakh-sukhaia-biologiia

Электронные ресурсы:

- 1. Видео «Создание множественного выравнивания последовательностей из файла формата FASTA» URL: https://vk.com/video-74359225 169913986
- 2. Видео «Работа с последовательностью: основные операции, часть 1» URL: https://vk.com/video-74359225_169913996
- 3. Видео «Поиск повторов в последовательности ДНК с помощью UGENE» URL: https://vk.com/video-74359225_169981847
- 4. Видео «Поиск сайтов рестрикции в UGENE» URL: https://vk.com/video-74359225_169934704
- 5. Видео «Работа с множественным выравниванием последовательностей, основы» URL: https://vk.com/video-74359225_169914004
- 6. Видео «Работа с Open Reading Frames (ORF-ы) в UGENE» URL: https://vk.com/video-74359225_169981845
- 7. Видео «Методы построения филогенетических деревьев» URL: https://vk.com/video-74359225_170064984
- 8. Лекции «Генная инженерия в школе» URL: https://www.youtube.com/@gen_eng
- 9. Северинов Константин. Редактирование генома с CRISPR/Cas9 / Постнаука https://postnauka.ru/animate/154870

VII. Приложения

Приложение 1

Календарный учебный график

Педагог: Икко Н.В.

Количество учебных недель: 36

Режим проведения занятий: 2 раза в неделю по 2 академических часа

Праздничные и выходные дни (согласно государственному календарю)

Каникулярный период:

Во время каникул занятия в объединениях проводятся в соответствии с учебным планом, допускается изменение расписания.

№ п/п	Месяц	Чис ло	Время проведения занятия	Форма занятия	Кол- во часо в	Тема занятия	Место проведе ния	Форма контроля
1.			16.25 — 18.00	Лекция, практическое занятие	2	Введение в образовательную программу.	Биокван тум, каб. 120	Фронтальная (устный опрос)
2.			16.25 — 18.00	Лекция	2	Основы исследовательской деятельности	Биокван тум, каб. 120	Фронтальная (устный опрос)
3.			16.25 — 18.00	Практическая работа	2	Практикум «Знакомство с библиографически ми базами данных»	Биокван тум, каб. 120	Групповая (практическая проверка)
4.			16.25 — 18.00	Лекция	2	Основы исследовательской деятельности	Биокван тум, каб. 120	Комбинированная (практическая проверка)
5.			16.25 — 18.00	Работа в малых группах	2	Практикумы «Разработка и выполнение рисунков, чертежей, схем, графиков, макетов», «Оформление и редактирование текста научной работы».	Биокван тум, каб. 120	Групповая (практическая проверка)
6.			16.25 — 18.00	Работа в малых группах	2	Практикум «Составление тезисов и аннотации исследовательской работы»	Биокван тум, каб. 120	Групповая (практическая проверка)
7.			16.25 — 18.00	Лекция	2	Система рестрикции- модификации бактерий	Биокван тум, каб. 120	Фронтальная (устный опрос)

8.	16.25 — 18.00	Лекция	2	Ферменты рестрикции, их особенности. Сайты рестрикции	Биокван тум, каб. 120	Фронтальная (устный опрос)
9.	16.25 — 18.00	Лекция	2	Системы CRISPR/Cas как иммунная система прокариот	Биокван тум, каб. 120	Фронтальная (устный опрос)
10.	16.25 — 18.00	Самостоятельн ая работа в группах	2	Кейс «Молекулярные ножницы»	Биокван тум, каб. 120	Групповая (практическая проверка)
11.	16.25 — 18.00	Самостоятельн ая работа в группах	2	Кейс «Молекулярные ножницы»	Биокван тум, каб. 120	Групповая (практическая проверка)
12.	16.25 — 18.00	Самостоятельн ая работа в группах	2	Знакомство с программным пакетом UGENE	Биокван тум, каб. 120	Групповая (практическая проверка)
13.	16.25 — 18.00	Самостоятельн ая работа в группах	2	Работа в UGENE с сайтами рестрикции	Биокван тум, каб. 120	Групповая (практическая проверка)
14.	16.25 — 18.00	Лекция	2	Введение в рестрикционный анализ ДНК	Биокван тум, каб. 120	Фронтальная (устный опрос)
15.	16.25 — 18.00	Самостоятельн ая работа в группах	2	Кейс «Головоломка из фрагментов ДНК»	Биокван тум, каб. 120	Групповая (практическая проверка)
16.	16.25 — 18.00	Самостоятельн ая работа в группах	2	Кейс «Головоломка из фрагментов ДНК»	Биокван тум, каб. 120	Групповая (практическая проверка)
17.	16.25 — 18.00	Лабораторная работа	2	Рестрикционное расщепление ДНК фага лямбда	Биокван тум, каб. 120	Комбинированная (практическая проверка)
18.	16.25 — 18.00	Лабораторная работа	2	Рестрикционное расщепление ДНК фага лямбда	Биокван тум, каб. 120	Комбинированная (практическая проверка)
19.	16.25 — 18.00	Лабораторная работа	2	Рестрикционное расщепление ДНК фага лямбда	Биокван тум, каб. 120	Комбинированная (практическая проверка)
20.	16.25 — 18.00	Лабораторная работа	2	Рестрикционное расщепление плазмиды, выделенной из штамма <i>E.coli</i>	Биокван тум, каб. 120	Комбинированная (практическая проверка)
21.	16.25 — 18.00	Лабораторная работа	2	Рестрикционное расщепление плазмиды, выделенной из штамма <i>E.coli</i>	Биокван тум, каб. 120	Комбинированная (практическая проверка)
22.	16.25 — 18.00	Лабораторная	2	Рестрикционное расщепление плазмиды,	Биокван тум, каб. 120	Комбинированная (практическая проверка)

		работа		выделенной из штамма <i>E.coli</i>		
23.	16.25 — 18.00	Лекция	2	Репликация ДНК.	Hi-tech цех, каб. 127	Фронтальная (устный опрос)
24.	16.25 — 18.00	Лекция	2	Амплификация ДНК. Полимеразная цепная реакция.	Биокван тум, каб. 120	Фронтальная (устный опрос)
25.	16.25 — 18.00	Самостоятельн ая работа в группах	2	Кейс «Генная гармошка»	Биокван тум, каб. 120	Групповая (практическая проверка)
26.	16.25 — 18.00	Самостоятельн ая работа в группах	2	Кейс «Генная гармошка»	Биокван тум, каб. 120	Групповая (практическая проверка)
27.	16.25 — 18.00	Лабораторная работа	2	Амплификация гена резус-фактора человека	Биокван тум, каб. 120	Комбинированная (практическая проверка)
28.	16.25 — 18.00	Лабораторная работа	2	Амплификация гена резус-фактора человека	Биокван тум, каб. 120	Комбинированная (практическая проверка)
29.	16.25 — 18.00	Лабораторная работа	2	Амплификация гена резус-фактора человека	Биокван тум, каб. 120	Комбинированная (практическая проверка)
30.	16.25 — 18.00	Лабораторная работа	2	Амплификация гена резус-фактора человека	Биокван тум, каб. 120	Комбинированная (практическая проверка)
31.	16.25 — 18.00	Лабораторная работа	2	Амплификация гена резус-фактора человека	Биокван тум, каб. 120	Комбинированная (практическая проверка)
32.	16.25 — 18.00	Лабораторная работа	2	Амплификация гена резус-фактора человека	Биокван тум, каб. 120	Комбинированная (практическая проверка)
33.	16.25 — 18.00	Лекция	2	Применение ДНК- технологий в криминалистике	Биокван тум, каб. 120	Фронтальная (устный опрос)
34.	16.25 — 18.00	Лекция	2	Геномная дактилоскопия (фингерпринтинг)	Биокван тум, каб. 120	Фронтальная (устный опрос)
35.	16.25 — 18.00	Самостоятельн ая работа в группах	2	Кейс «Играем в детективов»	Биокван тум, каб. 120	Групповая (практическая проверка)
36.	16.25 — 18.00	Самостоятельн ая работа в группах	2	Кейс «Играем в детективов»	Биокван тум, каб. 120	Групповая (практическая проверка)

37.	16.25 — 18.00	Лабораторная работа	2	Идентификация личности методом ПЦР-анализа	Биокван тум, каб. 120	Комбинированная (практическая проверка)
38.	16.25 — 18.00	Лабораторная работа	2	Идентификация личности методом ПЦР-анализа	Биокван тум, каб. 120	Комбинированная (практическая проверка)
39.	16.25 — 18.00	Лабораторная работа	2	Идентификация личности методом ПЦР-анализа	Биокван тум, каб. 120	Комбинированная (практическая проверка)
40.	16.25 — 18.00	Лабораторная работа	2	Идентификация личности методом ПЦР-анализа	Биокван тум, каб. 120	Комбинированная (практическая проверка)
41.	16.25 — 18.00	Лабораторная работа	2	Фингерпринтинг методом рестрикционного анализа	Биокван тум, каб. 120	Комбинированная (практическая проверка)
42.	16.25 18.00	Лабораторная работа	2	Фингерпринтинг методом рестрикционного анализа	Биокван тум, каб. 120	Комбинированная (практическая проверка)
43.	16.25 18.00	Лабораторная работа	2	Фингерпринтинг методом рестрикционного анализа	Биокван тум, каб. 120	Комбинированная (практическая проверка)
44.	16.25 18.00	Лабораторная работа	2	Фингерпринтинг методом рестрикционного анализа	Биокван тум, каб. 120	Комбинированная (практическая проверка)
45.	16.25 — 18.00	Лекция	2	История возникновения и развития геномики	Биокван тум, каб. 120	Фронтальная (устный опрос)
46.	16.25 — 18.00	Лекция	2	Секвенирование нуклеиновых кислот	Биокван тум, каб. 120	Фронтальная (устный опрос)
47.	16.25 — 18.00	Лекция	2	Структура генома прокариот и эукариот	Биокван тум, каб. 120	Фронтальная (устный опрос)
48.	16.25 — 18.00	Лекция	2	Геномика и омиксные технологии	Биокван тум, каб. 120	Фронтальная (устный опрос)
49.	16.25 — 18.00	Практическая работа	2	Решение задач на анализ геномов	Биокван тум, каб. 120	Групповая (практическая проверка)
50.	16.25 — 18.00	Практическая работа	2	Решение задач на анализ геномов	Биокван тум, каб. 120	Групповая (практическая проверка)
51.	16.25 — 18.00	Практическая	2	Решение задач на анализ геномов	Биокван	Групповая

		работа			тум, каб. 120	(практическая проверка)
52.	16.25 — 18.00	Лекция	2	История возникновения и развития биоинформатики	Биокван тум, каб. 120	Фронтальная (устный опрос)
53.	16.25 — 18.00	Лекция	2	Биологические базы данных	Биокван тум, каб. 120	Фронтальная (устный опрос)
54.	16.25 — 18.00	Лекция	2	Биологические базы данных	Биокван тум, каб. 120	Фронтальная (устный опрос)
55.	16.25 — 18.00	Лекция	2	Биоинформатическ ие программы и сервисы	Биокван тум, каб. 120	Фронтальная (устный опрос)
56.	16.25 — 18.00	Практическая работа	2	Работа в базе данных NCBI	Биокван тум, каб. 120	Групповая (практическая проверка)
57.	16.25 — 18.00	Практическая работа	2	Работа в базе данных NCBI	Биокван тум, каб. 120	Групповая (практическая проверка)
58.	16.25 — 18.00	Практическая работа	2	Работа в базе данных NCBI	Биокван тум, каб. 120	Групповая (практическая проверка)
59.	16.25 — 18.00	Практическая работа	2	Работа в базе данных NCBI	Биокван тум, каб. 120	Групповая (практическая проверка)
60.	16.25 — 18.00	Практическая работа	2	Работа в базе данных KEGG	Биокван тум, каб. 120	Групповая (практическая проверка)
61.	16.25 — 18.00	Практическая работа	2	Работа в базе данных UniProt	Биокван тум, каб. 120	Групповая (практическая проверка)
62.	16.25 — 18.00	Практическая работа	2	Работа в базе данных GenBank	Биокван тум, каб. 120	Групповая (практическая проверка)
63.	16.25 — 18.00	Практическая работа	2	Работа в базе данных Protein Data Bank	Биокван тум, каб. 120	Групповая (практическая проверка)
64.	16.25 — 18.00	Практическая работа	2	Анализ последовательност ей биологических полимеров	Биокван тум, каб. 120	Групповая (практическая проверка)
65.	16.25 — 18.00	Практическая работа	2	Анализ последовательност ей биологических	Биокван тум,	Групповая (практическая

i i	1 1	Ī	ı	l .	l 5 100	l ,
				полимеров	каб. 120	проверка)
66.	16.25 — 18.00	Практическая работа	2	Расширенный поиск с применением алгоритмов семейства BLAST	Биокван тум, каб. 120	Групповая (практическая проверка)
67.	16.25 18.00	Практическая работа	2	Расширенный поиск с применением алгоритмов семейства BLAST	Биокван тум, каб. 120	Групповая (практическая проверка)
68.	16.25 — 18.00	Практическая работа	2	Анализ результатов секвенирования	Биокван тум, каб. 120	Групповая (практическая проверка)
69.	16.25 — 18.00	Практическая работа	2	Анализ результатов секвенирования	Биокван тум, каб. 120	Групповая (практическая проверка)
70.	16.25 — 18.00	Практическая работа	2	Филогенетический анализ	Биокван тум, каб. 120	Групповая (практическая проверка)
71.	16.25 — 18.00	Практическая работа	2	Филогенетический анализ	Биокван тум, каб. 120	Групповая (практическая проверка)
72.	16.25 — 18.00	Мини- конференция	2	Презентация проектов	Биокван тум, каб. 120	Групповая (практическая проверка)
		Итого:	144			

Вопросы вводной диагностики

Выберите один верный ответ из четырех

Любой ген в клетке представляет собой

1.

1) молекулу АТФ, богатую энергией	
2) молекулу ДНК в соединении с белками	
3) одну нить молекулы ДНК, состоящую из множества нуклеотидов	
4) отрезок молекулы ДНК, контролирующий синтез одной полипепти	идной цепи
2. Реакции окисления органических веществ в клетке, сопровождаемы АТФ за счет освобождаемой энергии, называют 1) энергетическим обменом 4) хемосинтезом	е синтезом молекул
2) пластическим обменом3) фотосинтезом	
3. Рибосомная РНК синтезируется в основном в 1) ядрышке 4) лизосомах 2) рибосомах	
3) митохондриях	
 4. Синтез какого вещества происходит в ядре? 1) белка 4) липида 2) глюкозы 3) иРНК 	
 5. Для всех живых существ на Земле генетический код един, поэтому ег 1) триплетным 4) универсальным 2) однозначным 3) прерывающимся 	го считают
6. Антикодону УГЦ на транспортной РНК соответствует триплет на ДН 1) ТГЦ 4) АЦГ 2) АГЦ 3) ТЦГ	К
7. Строго фиксированное начало считывания наследственной информац 1) ген в цепи ДНК 2) ген в цепи рРНК 3) молекула тРНК 4) молекула белка	ии имеет

8. В конце каждого гена находится триплет, и обозначает прекращение синтеза	который <u>не кодирует</u> ни одной аминокислоты и			
1) одной белковой цепи	4) синтеза иРНК			
2) нескольких молекул белка				
3) синтеза ДНК				
9. В процессе дыхания энергия может перехо	дить из			
1) химической в тепловую	4) тепловой в механическую			
2) механической в тепловую				
3) тепловой в химическую				
10. Какие вещества синтезируются в клетках ч 1) фосфолипиды 2) углеводы	пеловека из аминокислот?			
3) витамины				
4) белки				
11. Информация о порядке расположения амин помощью последовательности нуклеотидов в ДНК	· · · · · · · · · · · · · · · · · · ·			
1) генетический код	3) триплет			
2) генофонд	4) генотип			
12. Каждый триплет кодирует всего одну амин	нокислоту, поэтому код считают			
1) универсальным	4) вырожденным			
2) триплетным				
3) однозначным				
13. Хранителем наследственности в клетке явл закодирована информация о	пяются молекулы ДНК, так как в них			
1) составе полисахаридов	4) строении аминокислот			
2) структуре молекул липидов3) первичной структуре молекул белка				
э) перви той структуре молекул ослка				
14. Большую роль в биосинтезе белка играет тРН	К, которая			
 служит матрицей для синтеза белка служит местом для сборки полипептидной цеп 	и			
3) переносит информацию из ядра к рибосомам				
4) доставляет аминокислоты к рибосомам				
15. В рибосомах животной клетки протекает п 1) хемосинтеза	роцесс			
2) биосинтеза				
3) фотосинтеза4) гликолиза				
.,				

В молекуле ДНК количество нуклеотидов с гуанином составляет 15% от общего числа.

Доля нуклеотидов с тимином в этой молекуле составит

1) 30%

2) 35%3) 70%4) 85%			
17. Последовательность аминокислот в молекулодного нуклеотида на другой в молекуле ДНК, бла 1) вырожденности 2) универсальности	_		
8. Для соединения одной молекулы аминокислоты с тРНК необходима энергия молек $\Lambda T\Phi$			
1) 1	3) 3		
2) 2	4) 4		
19. Определите количество молекул аминокисл нуклеотидов	пот в полипетиде, если иРНК содержит 360		
1) 120	3) 720		
2) 360	4) 1080		
20. В жизненном цикле клетки процессы транс 1) интерфазе 2) профазе 3) метафазе 4) телофаза	крипции осуществляются в		

Программа воспитательной работы

Цель воспитания — создание условий для воспитания гармонично развитой и социально ответственной личности на основе духовно-нравственных ценностей народов Российской Федерации, исторических и национально-культурных традиций»

Задачи:

- воспитание положительных морально-волевых качеств: ответственности, дисциплинированности, честности, трудолюбия, самостоятельности;
- формирование доброжелательного отношения к товарищам, уважительного отношения к результатам своих достижений и достижениям других;
- формирование духовно-нравственных качеств социально активной личности, воспитание трудолюбия, инициативности и настойчивости в преодолении трудностей;
- формирования экологического мышления, а также установки на бережное отношение к природным ресурсам и готовности к активной деятельности по сохранению окружающей среды;

Целевые ориентиры воспитания:

- формирование интереса к науке, к истории естествознания;
- формирование познавательных интересов, ценностей научного познания;
- формирование понимания значения науки в жизни российского общества;
- формирование интереса к личностям деятелей российской и мировой науки;
- формирование ценностей научной этики, объективности;
- формирование понимания личной и общественной ответственности учёного, исследователя;
- формирование стремления к достижению общественного блага посредством познания, исследовательской деятельности;
- формирование уважения к научным достижениям российских учёных;
- формирование понимания ценностей рационального природопользования;
- формирование опыта участия в значимых научно-исследовательских проектах;
- формирование воли, дисциплинированности в исследовательской деятельности.

Формы и методы воспитания

Основной формой воспитания и обучения детей в системе дополнительного образования является учебное занятие. В ходе учебных занятий в соответствии с предметным и метапредметным содержанием программ обучающиеся: усваивают информацию, имеющую воспитательное значение; получают опыт деятельности, в которой формируются, проявляются и утверждаются ценностные, нравственные ориентации; осознают себя способными к нравственному выбору; участвуют в освоении и формировании среды своего личностного развития, творческой самореализации.

Практические занятия способствуют усвоению и применению правил поведения и коммуникации, формированию позитивного и конструктивного отношения к событиям, в которых они участвуют, к членам своего коллектива.

Участие в проектах и исследованиях способствует формированию умений в области целеполагания, планирования и рефлексии, укрепляет внутреннюю дисциплину, даёт опыт долгосрочной системной деятельности.

Итоговые мероприятия (конкурсы, соревнования, выставки, выступления, презентации проектов и исследований) способствуют закреплению ситуации успеха, развивают рефлексивные и коммуникативные умения, ответственность, благоприятно воздействуют на эмоциональную сферу детей.

Методы оценки результативности реализации программы в части воспитания:

- педагогическое наблюдение
- оценка творческих и исследовательских работ и проектов экспертным сообществом с точки зрения воспитательных результатов

Календарный план воспитательной работы

	Название события, мероприятия	Сроки	Форма проведения
1.	День знаний	1 сентябрь	Беседа
		•	Просмотр видеофильма
3.	Всемирный день науки	10 ноября	Встреча с ученым
4.	День российской науки	8 февраля	Встреча с ученым
1.7	Международный день женщин и девочек в науке	11 февраля	Встреча с ученым
6.	Международный день ДНК	25 апреля	Урок генетики
7.	Международный день полета человека в космос	12 апреля	Беседа, просмотр видеофильма
8.	Международный день Матери-Земли	1// 9 П РЕП О	Беседа, просмотр видеофильма
9.	День биолога	Последняя суббота апреля	Встреча с ученым