Министерство образования и науки Мурманской области Государственное автономное нетиповое образовательное учреждение Мурманской области «Центр образования «Лапландия»

ПРИНЯТА

методическим советом

Протокол

OT 10.06 2024 Nº 24

Председатель _____ Е. В. Коровина

УТВЕРЖДЕНА

приказом ГАНОУ МО

«ЦО «Лапландия»

от <u>13.06. ДОМ</u> .№

Директор Мисен С. В. Кулаков

ПРОМРОБОКВАНТУМ

ДОПОЛНИТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА ТЕХНИЧЕСКОЙ НАПРАВЛЕННОСТИ

«Основы робототехники. Линия 0»

Возраст учащихся: 10 – 12 лет

Срок реализации программы: 1 год

Составитель:

Кулага Вадим Дмитриевич,

педагог дополнительного образования

Мурманск 2024 **Направленность** – техническая **Уровень** - стартовый

Пояснительная записка

- **1. Область применения программы:** может применяться в учреждениях дополнительного образования и общеобразовательных школах при наличии материальнотехнического обеспечения и соблюдении санитарных норм.
- **2. Программа разработана в соответствии** нормативными правовыми актами и государственными программными документами:
 - Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
 - с приказом Министерства просвещения Российской Федерации от 27.07.2022 №629 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
 - Указ Президента Российской Федерации от 28 февраля 2024 г. № 145 «О Стратегии научно-технологического развития Российской Федерации»;
 - Распоряжение Минпросвещения России от 17.12.2019 № Р-139 «Об утверждении методических рекомендаций по созданию детских технопарков «Кванториум» в рамках региональных проектов, обеспечивающих достижение целей, показателей и результата федерального проекта «Успех каждого ребенка» национального проекта «Образование» и признании утратившим силу распоряжение Минпросвещения России от 1 марта 2019 г. N Р-27 «Об утверждении методических рекомендаций по созданию и функционированию детских технопарков «Кванториум»;
 - Распоряжением Правительства РФ от 31 марта 2022 г. № 678-р (ред. от 15.05.2023) «Об утверждении Концепции развития дополнительного образования детей и признании утратившим силу Распоряжения Правительства РФ от 04.09.2014 № 1726-р;
 - Постановлением Главного государственного санитарного врача Российской Федерации от 28.09.2020 № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
 - постановлением Главного государственного санитарного врача Российской Федерации от 28.01.2021 №2 «Об утверждении санитарных правил и норм СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания».
- Педагогическая целесообразность и актуальность программы обусловлена развитием конструкторских способностей, алгоритмического и творческого мышления детей в сфере технического творчества. Большую значимость среди учебных роботов в настоящее время имеют LEGO - конструкторы. Они позволяют достаточно быстро начать создавать роботов и роботизированные системы, что делает процесс приобщения к инновационному прогрессу динамичным и интересным для учащихся. Юные исследователи, войдя в занимательный мир роботов, погружаются в сложную среду информационных технологий, позволяющих роботам выполнять широчайший круг функций. Поэтому робототехника с Lego актуальна в дополнительном образовании. В настоящее время это один из лучших способов познакомиться с основами роботостроения для учащихся начальной школы, чтобы в будущем перейти на более сложный уровень освоения робототехники и мехатроники. В процессе учащиеся знакомятся с устройством существующих узлов и механизмов, осваивают азы алгоритмизации и программирования. Подготовка и участие в соревнованиях развивают бойцовские качества, учат работать в команде, доводить начатое дело до конца, принимать решения в критической обстановке и нести ответственность за них. Решая реальные проблемные ситуации, создавая проекты, учащиеся получают практический опыт работы в современном мире, становятся конкурентоспособными.

Программа «Основы Робототехники. Линия 0» разработана для овладения в равной степени и достаточно глубоко навыками, как конструирования, так и довольно сложных роботизированных систем на базе образовательного конструктора Lego Mindstorms, ребята проходят путь от простейших моделей, до достаточно объемных роботов, содержащих различные алгоритмические конструкции и программы, в программной среде Lego Mindstorms. После освоения данной программы учащиеся по желанию смогут перейти на более сложный уровень. Так же новизна программы обусловлена использованием современных педагогических технологий, методов и приемов, различных техник и способов работы, современного робототехнического и компьютерного оборудования.

4. Цель программы: создание условий для развития творческих, инженерных и конструкторских способностей, алгоритмического и пространственного мышления учащихся, навыков командного взаимодействия, моделирования, программирования робототехнических устройств.

5. Задачи программы.

Обучающие:

- научить принципам работы робототехнических элементов, конструирования, программирования, основным принципам механики, анализу и обработке информации;
- научить приемам и технологиям разработки простейших алгоритмов и систем управления роботом;
- сформировать умения и навыки применять знания основ конструирования и программирования для создания моделей реальных объектов и процессов;

Развивающие

- развивать у обучающихся техническое мышление, изобретательность, способствовать развитию инженерного мышления, навыков конструирования, программирования и эффективного использования кибернетических систем;
- развивать волю, терпение, самоконтроль, внимание, память, фантазию, способности осознанно ставить перед собой конкретные задачи, разбивать их на отдельные этапы и добиваться их выполнения;
- стимулировать познавательную активность обучающихся посредством включения их в различные виды конкурсной деятельности.

Воспитательные

- воспитывать аккуратность и дисциплинированности при выполнении работы, самоорганизацию;
- способствовать формированию положительной мотивации к трудовой деятельности;
- способствовать формированию опыта совместного и индивидуального творчества при выполнении командных заданий;
- воспитывать чувство патриотизма, гражданственности, гордости за достижение отечественной науки и техники.
 - **6. Программа** рассчитана на учащихся в возрасте 10-12 лет.
 - 7. Форма реализации программы очная.
 - **8.** Объем программы -1 год.
 - **9. Объем программы** -144 часа.
- **10. Форма организации занятий** групповая. Практическая работа организована по звеньям с элементами индивидуального консультирования в рамках групповых занятий.
- **11. Режим занятий**: 2 раза в неделю по 2 академических часа (продолжительность учебного часа 45 мин, исходя из санитарно-гигиенических норм и требований по технике безопасности для объединений технической направленности).
- **12.** Виды учебных занятий и работ: проект, самостоятельная работа, лабораторная работа, беседа, лекция, соревнования, тестирование.
 - 13. Ожидаемые результаты.

Предметные:

В результате освоения программы, обучающиеся должны знать:

- правила безопасного пользования оборудованием, организовывать рабочее место;
- основные направления развития робототехники;
- основные сферы применения робототехники и мехатроники;
- Элементную базу образовательного конструктора Lego Education Mindstorms EV3;
- основные принципы работы с элементами образовательного конструктора Lego Education Mindstorms EV3;
- основы алгоритмизации и программирования в среде Lego Education Mindstorms EV3.

уметь:

- соблюдать технику безопасности;
- разрабатывать простейшие системы с использованием электронных компонентов и робототехнических элементов;
- разрабатывать простейшие алгоритмы и системы управления робототехническими устройствами.

Владеть навыками:

- основной терминологией в области робототехники, электроники, технологий искусственного интеллекта, компьютерных технологий;
- методами разработки простейших алгоритмов и систем управления, машинного обучения, технических устройств и объектов управления.
- Взаимодействия и распределения ролей в команде.

Метапредметные:

Регулятивные универсальные учебные действия:

- умение принимать и сохранять учебную задачу;
- умение планировать последовательность шагов алгоритма для достижения цели;
- умение ставить цель (создание творческой работы), планировать достижение этой цели;
- умение осуществлять итоговый и пошаговый контроль по результату;
- способность адекватно воспринимать оценку учителя и сверстников;
- умение различать способ и результат действия;
- умение вносить коррективы в действия в случае расхождения результата решения задачи на основе ее оценки и учета характера сделанных ошибок;
- умение в сотрудничестве ставить новые учебные задачи;
- способность проявлять познавательную инициативу в учебном сотрудничестве;
- умение осваивать способы решения проблем творческого характера в жизненных ситуациях;
- умение оценивать получающийся творческий продукт и соотносить его с изначальным замыслом, выполнять по необходимости коррекции либо продукта, либо замысла.

Познавательные универсальные учебные действия:

- умение осуществлять поиск информации в индивидуальных информационных архивах учащегося, информационной среде образовательного учреждения, в федеральных хранилищах информационных образовательных ресурсов;
- умение использовать средства информационных и коммуникационных технологий для решения коммуникативных, познавательных и творческих задач;
- умение ориентироваться в разнообразии способов решения задач;
- умение осуществлять анализ объектов с выделением существенных и несущественных признаков;
- умение проводить сравнение, классификацию по заданным критериям;

- умение строить логические рассуждения в форме связи простых суждений об объекте;
- умение устанавливать аналогии, причинно-следственные связи;
- умение моделировать, преобразовывать объект из чувственной формы в модель, где выделены существенные характеристики объекта (пространственно-графическая или знаково-символическая);
- умение синтезировать, составлять целое из частей, в том числе самостоятельное достраивание с восполнением недостающих компонентов;
- умение выбирать основания и критерии для сравнения, сериации, классификации объектов.

Коммуникативные универсальные учебные действия:

- умение аргументировать свою точку зрения на выбор оснований и критериев при выделении признаков, сравнении и классификации объектов;
- умение выслушивать собеседника и вести диалог;
- способность признавать возможность существования различных точек зрения и права каждого иметь свою;
- умение планировать учебное сотрудничество с учителем и сверстниками: определять цели, функций участников, способов взаимодействия;
- умение осуществлять постановку вопросов: инициативное сотрудничество в поиске и сборе информации;
- умение разрешать конфликты: выявление, идентификация проблемы, поиск и оценка альтернативных способов разрешения конфликта, принятие решения и его реализация;
- умение управлять поведением партнера: контроль, коррекция, оценка его действий;
- умение с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации;
- владение монологической и диалогической формами речи.

Личностные:

- критическое отношение к информации и избирательность её восприятия;
- осмысление мотивов своих действий при выполнении заданий;
- развитие любознательности, сообразительности при выполнении разнообразных заданий проблемного и эвристического характера;
- развитие внимательности, настойчивости, целеустремленности, умения преодолевать трудности;
- развитие самостоятельности суждений, независимости и нестандартности мышления;
- воспитание чувства справедливости, ответственности;
- формирование профессионального самоопределения, ознакомление с миром профессий, связанных с робототехникой;
- формирование осознанного, уважительного и доброжелательного отношения к другому человеку, его мнению, мировоззрению, культур;
- освоение социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах;
- формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками.

14. Формы **промежуточной** аттестации: соревнование, тестирование, защита проекта. Наполняемость группы - 10-12 человек.

Учебный план

№	Тема	Тоория	Произило	Распо	Формы
п/п	Тема	Теория	Практика	Всего	аттестации/контроля
1	Введение. Знакомство с				Тестирование.
	элементами конструктора				
	Lego Mindstorms Education				
	EV3.				
	Теория: Первичный инструктаж				
	по ТБ, ПП и ЧС. Организация	1	1	2	
	рабочего места. Основные виды				
	деталей, датчики,				
	микрокомпьютер EV3.				
	Практика: Сборка модели по				
	технологической карте.				
2.	Конструирование				
2.1	Виды соединений.				Наблюдение
	Теория: Крестовое, круглое,				
	смешанное соединение.				
	Подвижные и неподвижные	1	1	2	
	соединения.				
	Практика: конструирование				
	манипулятора «Хваталка»				
2.2	Механическая передача				Тестирование
	Теория: Зубчатые колеса,				
	Совместимые и несовместимые				
	зубчатые колеса. Зубчатая				
	передача. Повышающая				
	зубчатая передача.				
	Передаточное отношение.				
	Мультиплексор. Понижающая				
	зубчатая передача. Редуктор.				
	Практика: Построение				
	мультиплексора, редуктора.				
2.3	Одномоторная тележка	1	1	2	Наблюдение

	<i>Теория:</i> Передний привод.				
	Задний привод.				
	Практика: Полноприводная				
	тележка.				
2.4	Автономная тележка				Наблюдение
	<i>Теория:</i> Микрокомпьютер EV3.				
	Запуск программ.		_		
	Практика: Тележка с	1	1	2	
	изменением передаточного				
	отношения.				
2.5	Двухмоторная тележка				Наблюдение
	Теория: Принципы построения				
	двухмоторной тележки.				
	Практика: Сборка различных				
	двухмоторных тележек по				
	технологическим картам.	2	2	4	
	Конструирование				
	двухмоторной тележки по				
	собственному замыслу.				
	Тестирование и сравнительный				
	анализ моделей.				
2.6	Гоночная машина				Соревнование
	Теория: Устройство гоночной				
	машины. Правила состязания				
	«Drag racing».	2	2	4	
	Практика: Конструирование и	2	2	4	
	тестирование робота для				
	состязания «Drag racing».				
	Состязание «Drag racing».				
2.7	Тягач.				Соревнование
	Теория: Устройство тягача.				
	Правила состязания				
	«Перетягивание каната».	1	3	4	
	Практика: Конструирование и				
	тестирование робота для				
	состязания «Перетягивания				
<u> </u>	I	<u> </u>	<u> </u>	1	

		8 I	<u> </u>		1
	каната». Состязание				
	«Перетягивание каната».				
2.8	Шагающие роботы.				Соревнование
	Теория: Педипулятор.				
	Устройство педипулятора.				
	Правила состязания «Гонка				
	шагающих роботов»				
	Практика: Конструирование				
	одномоторных и двухмоторных	2	4	6	
	шагающих роботов по				
	технологическим картам и по				
	собственному замыслу.				
	Тестирование конструкций.				
	Состязание «Гонка шагающих				
	роботов».				
2.9	Манипуляторы.				Соревнование
	Теория: Виды манипуляторов.				
	Принципы построения				
	манипуляторов. Правила				
	состязания «Захват флага»				
	Практика: Конструирование	1	5		
	манипуляторов,	1	5	6	
	предназначенных для				
	различных целей по				
	технологическим картам и по				
	собственному замыслу.				
	Состязание «Захват флага».				
3.	Аппаратно-программное			1	
	обеспечение Lego Education	1	3	4	
	Mindstorms EV3				
3.1	Модуль EV3.				Наблюдение,
	Теория: Звуки, экран,				лабораторная работа.
	индикатор состояния, кнопки	1	1		
	управления. Редактор звука.	1	1	2	
	Редактор изображений.				
	Практика: Запись и				
		<u> </u>	<u> </u>		

		9			
	редактирование звуков,				
	создание и редактирование				
	изображений.				
3.2	Моторы.				Наблюдение,
	Теория: Большой мотор,				лабораторная работа
	средний мотор,				
	программирование работы	1	1	2	
	моторов.				
	Практика: Создание программ				
	для управления моторами.				
3.3	Датчики.				Наблюдение,
	Теория: Датчики касания,				лабораторная работа,
	кнопки управления модулем				тестирование
	EV3, Гироскопический датчик,				
	Датчик цвета в режиме цвет,	2	2	4	
	освещение, ультразвуковой				
	датчик. Датчик вращения				
	мотора.				
	Практика: Работа с датчиками.				
4.	Программирование				
4.1	Программирование работы				Наблюдение,
	моторов.				самостоятельная
	Теория: Настройка				работа, тестирование
	конфигурации.				
	Перемещение по прямой.	1	3	4	
	Движение по кривой.	1	3	4	
	Независимое управление.				
	Переместить объект.				
	Практика: Создание программ				
	управления движением робота.				
4.2	Движение на заданное				Наблюдение
	расстояние.				
	Теория: Математическое	1	1	2	
	обоснование движения робота	1	1		
	по прямой на заданное				
	расстояние. Мой блок.				
L	1	l .	I		I.

		10			
	Формула. Блок «Step».				
	Практика: Создание и				
	тестирования программ				
	управления роботом с				
	использованием блока «Step».				
4.3	Поворот на заданный угол.				Наблюдение
	Теория: Математическое				
	обоснование поворота робота				
	вокруг центра на заданный				
	угол. Блок «Rotate».	1	1	2	
	Практика: Создание и				
	тестирование программ				
	управления роботом с				
	использованием блока «Rotate».				
4.4	Робот-чертежник.				Самостоятельная
	Теория: Всероссийский				работа
	робототехнический фестиваль.				
	Правила состязания				
	«Чертежник».				
	Практика: Построение и				
	исследование стандартной	1	5	6	
	модели. Модификация модели.	1	3	6	
	Выработка критериев для				
	построения робота-чертежника.				
	Создание собственной модели				
	робота-чертежника и ее				
	тестирование. Создание 3-D				
	модели робота в LDD.				
4.5	Решение задач на построение				Самостоятельная
	Роботом-чертежником				работа, соревнование
	различных фигур.				
	Теория: Измерение углов.	2	5	7	
	Внутренний и внешний угол.	<u> </u>	3	_ ′	
	Смежные углы. Сумма				
	смежных углов. Расчет угла				
	поворота робота.				
	<u>l</u>	1	I	1	l

	Практика: Создание программ	11			
	для изображения простых и				
	сложных фигур. Построение				
	правильных многоугольников.				
	Состязание «Чертежник».				
4.6	Создание программ для				Самостоятельная
	робота с несколькими				работа, соревнование
	датчиками. Состязание				
	«Кегельринг».				
	Теория: Остановиться у линии,				
	остановиться под углом,				
	вернуться в исходную позицию,				
	остановиться у объекта.	3	4	7	
	Практика: Разработка,				
	конструирование и				
	тестирование робота для				
	состязания «Кегельринг».				
	Создание и тестирование				
	программы для состязания				
	«Кегельринг»				
4.7	Алгоритм. Виды алгоритмов.				Наблюдение
	Теория: Понятие алгоритма.				
	Следование, ветвление, цикл.	2	8	10	
	Практика: Разработка				
	алгоритма.				
4.8	Способы представления				Тестирование
	алгоритмов.				
	Теория: Представление				
	алгоритма на вербальном языке.				
	Блок-схема. Программа.	1	1		
	Практика: представление	1	1	2	
	алгоритма в виде блок-схемы.				
	Создание программы по				
	алгоритму, представленному в				
	виде блок-схемы.				
•	Bude one exempt.				

	Теория: Блок «Цикл».	12			работа
	Практика: Движение по				
	квадрату.				
4.10	Программирование				Тестирование
	ветвлений.				
	<i>Теория:</i> Блок «Переключатель».				
	Многопозиционный				
	переключатель. Определение				
	цвета.	1	7	8	
	Практика: Создание				
	программы для определения				
	цвета. Программа для				
	управления роботом при помои				
	цвета.				
4.11	Релейный регулятор.				Наблюдение
	<i>Теория:</i> Датчик цвета –				
	калибровка. Релейный	2	2	4	
	регулятор.	2	2	4	
	Практика: Движение по линии.				
	Движение вдоль стены.				
4.12	Запись формул.				Наблюдение
	<i>Теория:</i> Блоки датчиков. Шины				
	данных. Блок «Математика»	2	2	4	
	(базовый, дополнительный).	2	2	4	
	Блок «Переменная».				
	Практика: Запись формул.				
4.13	Пропорциональный				Соревнование
	регулятор.				
	Теория: Пропорциональный				
	регулятор. Движение по линии				
	с одним датчиком. Движение				
	по линии с двумя датчиками.				
	Практика: Движение вдоль				
	стены. Состязания «Лабиринт».				
	Движение по линии. Состязания				
	«Гонка по линии».				
	•				

4.14	Логические операции.	13			Наблюдение
	Теория: Блок «Сравнение». Логические функции. Блок «Логика». Практика: Создание программ управления движением робота, содержащих логические операции.	1	1	2	Паолюдение
5.	Итоговый проект				
5.1	итоговый проект «Большое путешествие». Теория: управление роботом при помощи пульта на основе EV3. Задачи для робота. Практика: Разработка робота (управляемого и автономного) для выполнения различных задач. Разработка пульта управления. Подготовка презентационных материалов.	3	12	15	Защита проекта
5.2	Защита проекта. Практика: Презентация робота и программ.	1	1	2	Защита проекта, тестирование
5.3	Свободное моделирование. Практика: Конструирование моделей по собственному выбору.	0	3	3	Наблюдение
Итог	0:	46	98	144	

Комплекс организационно-педагогических условий

Календарный учебный график (см. Приложение 1)

Ресурсное обеспечение программы.

Материально-техническое обеспечение педагогического процесса.

Для реализации дополнительной общеобразовательной программы «Основы Робототехники. Линия 0» необходимо:

- помещение для занятий с достаточным освещением (не менее 300-500лк);
- вентиляция в помещении;

- столы, стулья;
- экран;
- мультимедийный проектор;
- маркерная доска.

Инструменты и материалы:

- Образовательные конструкторы один на 2-х учащихся:
- Lego Education Mindstorms EV3 базовый и ресурсный.
- Тематические наборы Lego Duplo/ Lego Tehnic, дополнительные детали Lego.
- Программное обеспечение Lego Education Mindstorms EV3.
- ноутбуки один на 2-х учащихся,
- зарядная станция для ноутбуков,
- Поля для соревнований: кегельринг, шорт-трек, большое путешествие, чертежник.
- зарядные устройства для аккумуляторов EV3

Методическое обеспечение

Для освоения программы используются разнообразные приемы и методы обучения и воспитания.

Выбор осуществляется с учетом возможностей учащихся, их возрастных особенностей:

перцептивные методы: передача и восприятие информации посредством органов чувств /слух, зрение;

словесные методы: беседа, диалог педагога с учащимися, диалог учащихся друг с другом, познавательный рассказ, объяснение, инструкция, чтение;

наглядные, иллюстративно-демонстрационные методы:

- наглядные материалы (изображения, видео, инструкции, технологические карты),
- демонстрационные материалы (модели),
- демонстрационные примеры;

практические методы (упражнения в выполнении тех или иных способов действий с инструментами и самостоятельно, самостоятельное выполнение практической работы, создание презентаций, оформление инженерных листов),

проектные и проектно-конструкторские методы (проектирование модели, разработка алгоритмов):

- сборка модели по технологическим картам (готовый образец, схема, план),
- конструирование и программирование модели по техническому заданию,
- работа по замыслу;

метод проблемного обучения:

- объяснение основных понятий, определений, терминов,
- самостоятельный поиск решения выявленной проблемы,
- самостоятельное выявления проблем из проблемного поля.

метод игры:

• игры развивающие, познавательные, игры на развитие памяти, внимания, глазомера.

методы организации и осуществления учебно-познавательной деятельности:

- индуктивные и дедуктивные (способствующие развитию логики),
- репродуктивные и проблемно-поисковые (способствующие развитию мышления),
- методы самостоятельной работы и работы под руководством педагога (способствующие развитию организаторских качеств).

Программа строится на следующих принципах общей педагогики:

- принцип доступности материала, что предполагает оптимальный для усвоения объем материала, переход от простого к сложному, от известного к неизвестному;
- принцип системности определяет постоянный, регулярный характер его осуществления;
- принцип последовательности предусматривает строгую поэтапность выполнения практических заданий и прохождения разделов, а также их логическую преемственность в процессе осуществления.

Педагогические технологии, которые применяются при работе с учащимися

Название	Цель
Технология личностно-ориентированного	Развитие индивидуальных технических
обучения.	способностей на пути профессионального
	самоопределения учащихся.
Технология развивающего обучения.	Развитие личности и ее способностей через
	вовлечение в различные виды деятельности.
Технология проблемного обучения.	Развитие познавательной активности,
	самостоятельности учащихся.
Технология дифференцированного обучения.	Создание оптимальных условий для
	выявления задатков, развития интересов и
	способностей, используя методы
	индивидуального обучения.
Технологии здоровье сберегающие.	Создание оптимальных условий для
	сохранения здоровья учащихся.

Диагностика результативности образовательного процесса

Система оценки и фиксирования результатов Диагностика и контроль обучения

В процессе обучения осуществляется контроль за уровнем знаний и умений учащихся.

Основные методы контроля: наблюдение, собеседование, самостоятельные задания.

Система мониторинга разработана по видам контроля /таблица 1/.

Входной – имеет диагностические задачи и осуществляется в начале учебного года (первый год обучения).

Цель входного контроля — зафиксировать начальный уровень подготовки учащихся, имеющиеся знания, умения и навыки, связанные с предстоящей деятельностью.

Текущий – предполагает систематическую проверку и оценку знаний, умений и навыков по конкретным темам в течение учебного года.

Промежуточный — осуществляется в середине учебного года с целью оценки теоретических знаний, а также практических умений и навыков по итогам полугодия /таблица 2/.

Итоговый — проводится в конце каждого года обучения и предполагает оценку теоретических знаний, практических умений и навыков.

Результаты заносятся в сводную таблицу результатов обучения /таблица 4/.

Виды контроля

Таблица 1

Виды контроля	Содержание	Методы	Сроки
			контроля
Входной	Начальный уровень	Наблюдение.	Ноябрь
	подготовки		
	учащихся,		
	имеющиеся знания,		
	умения и навыки,		
	связанные с		
	предстоящей		
	деятельностью		
Текущий	Освоение учебного	Опрос	Декабрь-
	материала по		апрель
	темам.		
Промежуточный	Освоение учебного	Мини-проект, проект, соревнование	Декабрь-
	материала за		январь
	полугодие		
Итоговый		Защита проекта	Май

Промежуточная диагностика

по образовательной программе дополнительного образования детей Наличие первоначальных умений и навыков учащихся, связанных с предстоящей деятельностью:

- умение следовать правилам поведения, соблюдать технику безопасности,
- умение собирать простые модели по технологическим картам,
- наличие первичных навыков работы на компьютере,
- умение содержать в порядке рабочее место,
- умение доводить работу до конца.

Промежуточная диагностика по дополнительной общеразвивающей программе «Основы робототехники. Линия 1»

Педагог д/о		
Группа №	_год обучения	
Уровень теоретических знани	йи/или	
Уровень практических умений	і́ и навыков	
Форма проведения		

No	ФИ	Количество
π/π	учащегося	%
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		
11.		
12.		
13.		
14.		
15.		
16.		

Средний %

Уровни теоретической подготовки учащихся:

- высокий уровень учащийся освоил практически весь объём знаний 100-80%, предусмотренных программой за конкретный период; специальные термины употребляет осознанно и в полном соответствии с их содержанием;
- средний уровень у учащегося объём усвоенных знаний составляет 79-50%; сочетает специальную терминологию с бытовой;
- низкий уровень учащийся овладел менее чем 50% объёма знаний, предусмотренных программой; учащийся, как правило, избегает употреблять специальные термины. Уровни практической подготовки учащихся:
- высокий уровень учащийся овладел на 100-80% умениями и навыками, предусмотренными программой за конкретный период; работает с оборудованием самостоятельно, не испытывает особых трудностей; выполняет практические задания с элементами творчества;
- средний уровень у учащегося объём усвоенных умений и навыков составляет 79-50%;
 работает с оборудованием с помощью педагога; в основном, выполняет задания на основе образца;
- низкий уровень учащийся овладел менее чем 50%, предусмотренных умений и навыков; испытывает серьёзные затруднения при работе с оборудованием; обучающийся в состоянии выполнять лишь простейшие практические задания педагога.

Уровни / количество %	Параметры	Общие критерии оценки результативности обучения	Показатели
Высокий уровень/ 80-100%	Теоретические знания.	Оценка уровня теоретических знаний по программным требованиям: широта кругозора, свобода восприятия теоретической информации, развитость практических навыков работы со специальной литературой, осмысленность и свобода использования специальной терминологии	Учащийся освоил материал в полном объеме. Знает и понимает значение терминов, самостоятельно ориентируется в содержании материала по темам. Учащийся заинтересован, проявляет устойчивое внимание к выполнению заданий.
	Практические умения и навыки.	Оценка уровня практической подготовки учащихся: соответствие развития уровня практических умений и навыков программным требованиям, свобода владения специальным оборудованием и оснащением, качество выполнения практического задания, технологичность практической деятельности	Способен применять практические умения и навыки во время выполнения самостоятельных заданий. Правильно и по назначению применяет инструменты. Работу аккуратно доводит до конца. Может оценить результаты выполнения своего задания и дать оценку работы своего товарища.
Средний уровень/ 50%-79%	Теоретические знания.	Оценка уровня теоретических знаний по программным требованиям: широта кругозора, свобода восприятия теоретической информации, развитость практических навыков работы со специальной литературой, осмысленность и свобода использования специальной терминологии	Учащийся освоил базовые знания, ориентируется в содержании материала по темам, иногда обращается за помощью к педагогу. Учащийся заинтересован, но не всегда проявляет устойчивое внимание к выполнению задания.

	Практические	Оценка уровня практической подготовки	Владеет базовыми навыками и умениями, но не всегда может
	умения и навыки.	учащихся: соответствие развития уровня	выполнить самостоятельное задание, затрудняется и просит
		практических умений и навыков программным	помощи педагога. В работе допускает небрежность, делает
		требованиям, свобода владения специальным	ошибки, но может устранить их после наводящих вопросов или
		оборудованием и оснащением, качество	самостоятельно. Оценить результаты своей деятельности
		выполнения практического задания,	может с подсказкой педагога.
		технологичность практической деятельности	
Низкий	Теоретические	Оценка уровня теоретических знаний по	Владеет минимальными знаниями, ориентируется в
уровень /	знания.	программным требованиям: широта кругозора,	содержании материала по темам только с помощью педагога.
Ниже 50%		свобода восприятия теоретической	
		информации, развитость практических	
		навыков работы со специальной литературой,	
		осмысленность и свобода использования	
		специальной терминологии	
	Практические	Оценка уровня практической подготовки	Владеет минимальными начальными навыками и умениями.
	умения и навыки.	учащихся: соответствие развития уровня	Учащийся способен выполнять каждую операцию только с
		практических умений и навыков программным	подсказкой педагога или товарищей. Не всегда правильно
		требованиям, свобода владения специальным	применяет необходимый инструмент или не использует вовсе.
		оборудованием и оснащением, качество	В работе допускает грубые ошибки, не может их найти их даже
		выполнения практического задания,	после указания. Не способен самостоятельно оценить
		технологичность практической деятельности	результаты своей работы.

Сводная таблица результатов обучения по дополнительной общеразвивающей программе «Основы робототехники. Линия 1»

Таблица № 4

педагог д/о	
группа №	

№ п/п	ФИ обучающегося	Теорети ческие знания	Практичес кие умения и навыки	Творческие способности	Воспита тельные результа ты	Итого
1.						
2.						
3.						
4.						
5.						
6.						
7.						
8.						
9.						
10.						
11.						
12.						

Список литературы для педагога:

- 1. Асмолов А.Г. Формирование универсальных учебных действий в основной школе: от действия к мысли Москва: Просвещение, 2011. 159 С.
- 2. Игнатьев, П.А. Программа курса «Первые шаги в робототехнику» [Электронный ресурс]: персональный сайт www.ignatiev.hdd1.ru/informatika/lego.htm Загл. с экрана
- 3. Комплект методических материалов «Перворобот». Институт новых технологий.
- 4. Примерные программы по внеурочной деятельности для начальной школы (Из опыта работы по апробации $\Phi \Gamma$ OC)/ авт.-сост.: Н.Б. Погребова, О.Н.Хижнякова, Н.М. Малыгина, Ставрополь: СКИПКРО, 2010
- 5. Филиппов С.А. Робототехника для детей и родителей Наука, 2013 г.
- 6. Исогава Йошихито, Книга идей LEGO MINDSTORMS EV3 Эксмо, 2017 г.
- 7. Лоренс Валк, Большая книга LEGO MINDSTORMS EV3 Эксмо, 2017 г.
- 8. Интернет ресурсы:
- http://www.lego.com/education/ официальный сайт Lego;
- http://www.russianrobotics.ru официальный сайт программы «Робототехника»;
- фгос-игра.рф официальный сайт всероссийского учебно-методического центра образовательной робототехники;
- http://www.prorobot.ru/ сайт посвящен роботам и робототехнике.

Список литературы для учащегося

- 1. Мир вокруг нас: Книга проектов: Учебное пособие.- Пересказ с англ.-М.: Инт, 1998.
- 2. Филиппов С.А. Робототехника для детей и родителей Наука, 2013 г.
- 3. Исогава Йошихито, Книга идей LEGO MINDSTORMS EV3 Эксмо, 2017 г.
- 4. Лоренс Валк, Большая книга LEGO MINDSTORMS EV3 Эксмо, 2017 г.
- 5. Интернет ресурсы:
- http://www.lego.com/education/ официальный сайт Lego;
- http://www.prorobot.ru/ сайт посвящен роботам и робототехнике.

Календарный учебный график

(Приложение 1 к программе «Основы Робототехники. Линия 0»)

Педагог дополнительного образования: Кулага В.Д.

Режим проведения занятий: 2 раза в неделю по 2 часа. Количество часов – 144

Праздничные и выходные дни (согласно государственному календарю) 04.11.2024, 31.12.2024, 01.01.2025-08.01.2025, 23.02.2025, 08.03.2025, 01.05.2025, 09.05.2025 Каникулярный период:

Осенние каникулы: с 26 октября 2024 года по 4 ноября 2024 года. Зимние каникулы: с 30 декабря 2024 года по 8 января 2025 года.

Оздоровительные каникулы: с 17 февраля 2025 года по 23 февраля 2025

Весенние каникулы: с 22 марта 2025 года по 30 марта 2025 года. Летние каникулы: с 27 мая 2025 года по 31 августа 2025 года.

Группа 1

№п/п	Месяц	Число	Время проведения занятия	Форма занятия	Кол- во часов	Тема занятия	Место проведения	Форма контроля
1				Лекция-	2	Введение. Знакомство с элементами	Робоквантум	Тестирование.
				объяснение		конструктора Lego Mindstorms Education		
						EV3.		
	Сентябрь					Первичный инструктаж по ТБ, ПП и ЧС.		
						Организация рабочего места. Основные виды		
						деталей, датчики, микрокомпьютер EV3.		
						Сборка модели по технологической карте.		

2	Сентябрь	Лекция- объяснение. Практическ ое занятие	2	Виды соединений.	Робоквантум	Наблюдение
		(ЛК/ПР)				
3	Сентябрь	ЛК/ПР	2	Механическая передача	Робоквантум	Наблюдение
4	Сентябрь	ЛК/ПР	2	Механическая передача	Робоквантум	Тестирование
5	Сентябрь	ЛК/ПР	2	Одномоторная тележка	Робоквантум	Наблюдение
6	Октябрь	ЛК/ПР	2	Одномоторная тележка	Робоквантум	Наблюдение
7	Октябрь	ЛК/ПР	2	Автономная тележка	Робоквантум	Наблюдение
8	Октябрь	ЛК/ПР	2	Автономная тележка	Робоквантум	Наблюдение
9	Октябрь	ПР	2	Двухмоторная тележка	Робоквантум	Наблюдение
10	Октябрь	ПР	2	Двухмоторная тележка	Робоквантум	Наблюдение
11	Октябрь	ЛК/ПР	2	Гоночная машина	Робоквантум	Наблюдение
12	Октябрь	ЛК/ПР	2	Гоночная машина	Робоквантум	Наблюдение
13	Октябрь	ЛК/ПР	2	Тягач	Робоквантум	Соревнование
14	Октябрь	ЛК/ПР	2	Тягач	Робоквантум	Соревнование
15	Ноябрь	ЛК/ПР	2	Тягач	Робоквантум	Соревнование
16	Ноябрь	ЛК/ПР	2	Шагающие роботы.	Робоквантум	Наблюдение

17	Ноябрь	ЛК/ПР	2	Шагающие роботы.	Робоквантум	Наблюдение
18	Ноябрь	ЛК/ПР	2	Шагающие роботы.	Робоквантум	Наблюдение
19	Ноябрь	ЛК/ПР	2	Шагающие роботы.	Робоквантум	Наблюдение
20	Ноябрь	ЛК/ПР	2	Шагающие роботы	Робоквантум	Соревнование
21	Ноябрь	ЛК/ПР	2	Манипуляторы	Робоквантум	Наблюдение
22	Декабрь	ЛК/ПР	2	Манипуляторы	Робоквантум	Наблюдение
23	Декабрь	ЛК/ПР	2	Манипуляторы	Робоквантум	Наблюдение
24	Декабрь	ЛК/ПР	2	Манипуляторы	Робоквантум	Наблюдение
25	Декабрь	ПР	2	Модуль EV3	Робоквантум	Лабораторная работа
26	Декабрь	ЛК/ПР	2	Моторы	Робоквантум	Лабораторная работа
27	Декабрь	ЛК/ПР	2	Датчики	Робоквантум	Лабораторная работа
28	Декабрь	ЛК/ПР	2	Датчики	Робоквантум	Лабораторная работа
29	Декабрь	ЛК/ПР	2	Датчики	Робоквантум	Лабораторная работа
30	Январь	ЛК/ПР	2	Программирование работы моторов	Робоквантум	Лабораторная работа
31	Январь	ЛК/ПР	2	Программирование работы моторов	Робоквантум	Лабораторная

	1		I		1	
						работа
32		ЛК/ПР	2	Программирование работы моторов	Робоквантум	Лабораторная
	Январь					работа
33	Январь	ЛК/ПР	2	Движение на заданное расстояние	Робоквантум	Наблюдение
34	Январь	ЛК/ПР	2	Движение на заданное расстояние	Робоквантум	Наблюдение
35	Январь	ЛК/ПР	2	Поворот на заданный угол	Робоквантум	Наблюдение
36	Январь	ЛК/ПР	2	Поворот на заданный угол	Робоквантум	Наблюдение
37	Февраль	ЛК/ПР	2	Робот-чертежник	Робоквантум	Наблюдение
38	Февраль	ПР	2	Робот-чертежник	Робоквантум	Наблюдение
39	Февраль	ЛК/ПР	2	Робот-чертежник	Робоквантум	Наблюдение
40		ЛК/ПР	2	Робот-чертежник	Робоквантум	Самостоятель
	Февраль					ная работа
41		ЛК/ПР	2	Решение задач на построение Роботом-	Робоквантум	Самостоятель
	Февраль			чертежником различных фигур		ная работа
42		ЛК/ПР	2	Решение задач на построение Роботом-	Робоквантум	Самостоятель
	Февраль			чертежником различных фигур		ная работа
43		ПР	2	Решение задач на построение Роботом-	Робоквантум	Наблюдение
	Февраль			чертежником различных фигур		
44		ЛК/ПР	2	Решение задач на построение Роботом-	Робоквантум	Соревнование
	Февраль			чертежником различных фигур/ Создание		
				программ для робота с несколькими		
L	L		l	I		

				датчиками. Состязание «Кегельринг»		
45		ПР	2	Создание программ для робота с	Робоквантум	Наблюдение
	Март			несколькими датчиками. Состязание		
	1			«Кегельринг»		
46		ПР	2	Создание программ для робота с	Робоквантум	Наблюдение
	Март			несколькими датчиками. Состязание		
	Tap I			«Кегельринг»		
47	1	ЛК/ПР	2	Создание программ для робота с	Робоквантум	Соревнование
	Март			несколькими датчиками. Состязание «Кегельринг»		
48	Март	ЛК/ПР	2	Алгоритм. Виды алгоритмов	Робоквантум	Наблюдение
49	Март	ЛК/ПР	2	Алгоритм. Виды алгоритмов	Робоквантум	Наблюдение
50	Март	ЛК/ПР	2	Способы представления алгоритмов.	Робоквантум	Тестирование
51	Март	ЛК/ПР	2	Способы представления алгоритмов.	Робоквантум	Тестирование
52	Апрель	ПР	2	Программирование циклов	Робоквантум	Самостоятель ная работа
53	Апрель	ПР	2	Программирование циклов	Робоквантум	Самостоятель ная работа
54	Апрель	ЛК/ПР	2	Программирование ветвлений	Робоквантум	Тестирование
55	Апрель	ЛК/ПР	2	Релейный регулятор	Робоквантум	Наблюдение
56	Апрель	ЛК/ПР	2	Релейный регулятор	Робоквантум	Наблюдение
57	Апрель	ПР	2	Запись формул	Робоквантум	Наблюдение
58	Апрель	ЛК/ПР		Запись формул	Робоквантум	Наблюдение
59	Апрель	ПР	2	Пропорциональный регулятор	Робоквантум	Соревнование

60	Апрель	ЛК/ПР	2	Пропорциональный регулятор	Робоквантум	Наблюдение
61	Май	ПР	2	Логические операции	Робоквантум	Наблюдение
62	Май	ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
63	Май	ЛК/ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
64	Май	ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
65	Май	ЛК/ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
66	Май	ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
67	Май	ЛК/ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
68	Май	ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
69	Июнь	ЛК/ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
70	Июнь	ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
71		ПР	2	Защита проекта	Робоквантум	Защита
	Июнь					проекта,
						тестирование
72		ЛК/ПР	2	Промежуточная диагностика + Свободное	Робоквантум	Наблюдение
	Июнь			моделирование.		

Календарный учебный график

(Приложение 2 к программе «Основы Робототехники. Линия 0»)

Педагог дополнительного образования: Кулага В.Д.

Режим проведения занятий: 2 раза в неделю по 2 часа. Количество часов – 144

Каникулярный период:

Осенние каникулы: с 26 октября 2024 года по 4 ноября 2024 года. Зимние каникулы: с 30 декабря 2024 года по 8 января 2025 года.

Оздоровительные каникулы: с 17 февраля 2025 года по 23 февраля 20225

Весенние каникулы: с 22 марта 2025 года по 30 марта 2025 года. Летние каникулы: с 27 мая 2025 года по 31 августа 2025 года.

Группа 2

№п/п	Месяц	число	Время проведения занятия	Форма занятия	Кол- во часов	Тема занятия	Место проведения	Форма контроля
1				Лекция-	2	Введение. Знакомство с элементами	Робоквантум	Тестирование.
				объяснение		конструктора Lego Mindstorms Education		
						EV3.		
	Сентябрь					Первичный инструктаж по ТБ, ПП и ЧС.		
						Организация рабочего места. Основные виды		
						деталей, датчики, микрокомпьютер EV3.		
						Сборка модели по технологической карте.		

2	Сентябрь	Лекция- объяснение. Практическ ое занятие (ЛК/ПР)	2	Виды соединений.	Робоквантум	Наблюдение
3	Сентябрь	ЛК/ПР	2	Механическая передача	Робоквантум	Наблюдение
4	Сентябрь	ЛК/ПР	2	Механическая передача	Робоквантум	Тестирование
5	Сентябрь	ЛК/ПР	2	Одномоторная тележка	Робоквантум	Наблюдение
6	Октябрь	ЛК/ПР	2	Одномоторная тележка	Робоквантум	Наблюдение
7	Октябрь	ЛК/ПР	2	Автономная тележка	Робоквантум	Наблюдение
8	Октябрь	ЛК/ПР	2	Автономная тележка	Робоквантум	Наблюдение
9	Октябрь	ПР	2	Двухмоторная тележка	Робоквантум	Наблюдение
10	Октябрь	ПР	2	Двухмоторная тележка	Робоквантум	Наблюдение
11	Октябрь	ЛК/ПР	2	Гоночная машина	Робоквантум	Наблюдение
12	Октябрь	ЛК/ПР	2	Гоночная машина	Робоквантум	Наблюдение
13	Октябрь	ЛК/ПР	2	Тягач	Робоквантум	Соревнование
14	Октябрь	ЛК/ПР	2	Тягач	Робоквантум	Соревнование
15	Ноябрь	ЛК/ПР	2	Тягач	Робоквантум	Соревнование
16	Ноябрь	ЛК/ПР	2	Шагающие роботы.	Робоквантум	Наблюдение

17	Ноябрь	ЛК/ПР	2	Шагающие роботы.	Робоквантум	Наблюдение
18	Ноябрь	ЛК/ПР	2	Шагающие роботы.	Робоквантум	Наблюдение
19	Ноябрь	ЛК/ПР	2	Шагающие роботы.	Робоквантум	Наблюдение
20	Ноябрь	ЛК/ПР	2	Шагающие роботы	Робоквантум	Соревнование
21	Ноябрь	ЛК/ПР	2	Манипуляторы	Робоквантум	Наблюдение
22	Декабрь	ЛК/ПР	2	Манипуляторы	Робоквантум	Наблюдение
23	Декабрь	ЛК/ПР	2	Манипуляторы	Робоквантум	Наблюдение
24	Декабрь	ЛК/ПР	2	Манипуляторы	Робоквантум	Наблюдение
25	Декабрь	ПР	2	Модуль EV3	Робоквантум	Лабораторная работа
26	Декабрь	ЛК/ПР	2	Моторы	Робоквантум	Лабораторная работа
27	Декабрь	ЛК/ПР	2	Датчики	Робоквантум	Лабораторная работа
28	Декабрь	ЛК/ПР	2	Датчики	Робоквантум	Лабораторная работа
29	Декабрь	ЛК/ПР	2	Датчики	Робоквантум	Лабораторная работа
30	Январь	ЛК/ПР	2	Программирование работы моторов	Робоквантум	Лабораторная работа
31	Январь	ЛК/ПР	2	Программирование работы моторов	Робоквантум	Лабораторная

	1					
						работа
32		ЛК/.	ПР 2	Программирование работы моторов	Робоквантум	Лабораторная
	Январь					работа
33	Январь	ЛК/	ПР 2	Движение на заданное расстояние	Робоквантум	Наблюдение
34	Январь	ЛК/	ПР 2	Движение на заданное расстояние	Робоквантум	Наблюдение
35	Январь	ЛК/	ПР 2	Поворот на заданный угол	Робоквантум	Наблюдение
36	Январь	ЛК/	ПР 2	Поворот на заданный угол	Робоквантум	Наблюдение
37	Февраль	ЛК/	ПР 2	Робот-чертежник	Робоквантум	Наблюдение
38	Февраль	П	2	Робот-чертежник	Робоквантум	Наблюдение
39	Февраль	ЛК/	ПР 2	Робот-чертежник	Робоквантум	Наблюдение
40		ЛК/.	ПР 2	Робот-чертежник	Робоквантум	Самостоятель
	Февраль					ная работа
41		ЛК/.	ПР 2	Решение задач на построение Роботом-	Робоквантум	Самостоятель
	Февраль			чертежником различных фигур		ная работа
42		ЛК/	ПР 2	Решение задач на построение Роботом-	Робоквантум	Самостоятель
	Февраль			чертежником различных фигур		ная работа
43		П	2	Решение задач на построение Роботом-	Робоквантум	Наблюдение
	Февраль			чертежником различных фигур		
44		ЛК/	ПР 2	Решение задач на построение Роботом-	Робоквантум	Соревнование
	Февраль			чертежником различных фигур/ Создание		
	Февраль					
				программ для робота с несколькими		

	<u> </u>			датчиками. Состязание «Кегельринг»		
<u> </u>	'			•		
45		П	P 2	Создание программ для робота с	Робоквантум	Наблюдение
	Март			несколькими датчиками. Состязание		
	!			«Кегельринг»		
46	†	П	P 2	Создание программ для робота с	Робоквантум	Наблюдение
	Март			несколькими датчиками. Состязание		
	Iviapi					
<u></u>	<u> </u>			«Кегельринг»		
47		ЛК/	ΠP 2	Создание программ для робота с	Робоквантум	Соревнование
	Март			несколькими датчиками. Состязание «Кегельринг»		
48	+	ЛК/	ПР 2	«кегельринг» Алгоритм. Виды алгоритмов	Робоквантум	Наблюдение
	Март			<u> </u>	_	, .
49	Март	ЛК/	ПР 2	Алгоритм. Виды алгоритмов	Робоквантум	Наблюдение
50	Март	ЛК/	ПР 2	Способы представления алгоритмов.	Робоквантум	Тестирование
51	Март	ЛК/	ПР 2	Способы представления алгоритмов.	Робоквантум	Тестирование
52	Апрель	П	P 2	Программирование циклов	Робоквантум	Самостоятель
52				<u> </u>		ная работа
53	Апрель	П	P 2	Программирование циклов	Робоквантум	Самостоятель ная работа
54	Апрель	ЛК/	ПР 2	Программирование ветвлений	Робоквантум	Тестирование
55	Апрель	ЛК/	ПР 2	Релейный регулятор	Робоквантум	Наблюдение
56	Апрель	ЛК/	ПР 2	Релейный регулятор	Робоквантум	Наблюдение
57	Апрель	П	P 2	Запись формул	Робоквантум	Наблюдение
58	Апрель	ЛК/		Запись формул	Робоквантум	Наблюдение
59	Апрель	П	P 2	Пропорциональный регулятор	Робоквантум	Соревнование

60	Апрель	ЛК/ПР	2	Пропорциональный регулятор	Робоквантум	Наблюдение
61	Май	ПР	2	Логические операции	Робоквантум	Наблюдение
62	Май	ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
63	Май	ЛК/ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
64	Май	ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
65	Май	ЛК/ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
66	Май	ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
67	Май	ЛК/ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
68	Май	ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
69	Июнь	ЛК/ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
70	Июнь	ПР	2	Итоговый проект «Большое путешествие»	Робоквантум	Наблюдение
71		ПР	2	Защита проекта	Робоквантум	Защита
	Июнь					проекта,
						тестирование
72		ЛК/ПР	2	Промежуточная диагностика + Свободное	Робоквантум	Наблюдение
	Июнь			моделирование.		

(Приложение 3 к программе «Основы Робототехники. Линия 0») Программа воспитательной работы

В соответствии с законодательством Российской Федерации общей **целью воспитания** является развитие личности, самоопределение и социализация детей на основе социокультурных, духовно-нравственных ценностей и принятых в российском обществе правил и норм поведения в интересах человека, семьи, общества и государства, формирование чувства патриотизма, гражданственности, уважения к памяти защитников Отечества и подвигам Героев Отечества, закону и правопорядку, человеку труда и старшему поколению; взаимного уважения; бережного отношения к культурному наследию и традициям многонационального народа Российской Федерации, природе и окружающей среде (Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», ст. 2, п. 2).

Задачи воспитания детей заключаются в усвоении ими знаний норм, духовно-нравственных ценностей, традиций, которые выработало российское общество (социально значимых знаний); формировании и развитии личностных отношений к этим нормам, ценностям, традициям (их освоение, принятие); приобретении соответствующего этим нормам, ценностям, традициям социокультурного опыта поведения, общения, межличностных и социальных отношений, применения полученных знаний. Разработчик программы конкретизирует задачи воспитания детей по программе с учётом её предметного содержания, направленности.

Воспитательный процесс осуществляется в условиях организации деятельности детского коллектива на основной учебной базе реализации программы в организации дополнительного образования детей в соответствии с нормами и правилами работы организации.

Анализ результатов воспитания проводится в процессе педагогического наблюдения за поведением детей, их общением, отношениями детей друг с другом, в коллективе, их отношением к педагогу и выполнению своих заданий по программе.

План воспитательной работы:

№ п/п	Название события, мероприятия	Сроки	Форма проведения	
1.	День программиста	12 сентября	Беседа	
2.	День города-героя Мурманска	4 октября	Создание робота	
3.	День информатики в России	4 декабря	Беседа	
4.	Новый год	31 декабря	Беседа, создание робота	
5.	День защитника Отечества	23 февраля	Создание робота	
6.	Международный женский день	8 марта	Создание робота	
7.	День Победы 9 мая	9 мая	Беседа, создание робота	